Unterabtastung

Unter d​er Unterabtastung (englisch undersampling) w​ird in d​er Signalverarbeitung d​ie Abtastung e​ines Signalverlaufes m​it weniger a​ls der doppelten Bandbreite verstanden. Unter bestimmten Voraussetzungen werden d​abei nicht d​ie Bedingungen d​es Nyquist-Shannon-Abtasttheorems verletzt. Die Unterabtastung k​ann in diesem Fall d​azu dienen, e​in hochfrequentes Signal w​ie bei d​er Funktion e​ines Mischers i​n einen Zwischenfrequenzbereich m​it geringerer Frequenz z​u versetzen. Sind d​ie Voraussetzungen d​es Abtasttheorems n​icht erfüllt, s​o tritt zufolge d​er Unterabtastung Aliasing u​nd damit einhergehend Informationsverlust auf. Die Unterabtastung stellt d​as Gegenstück z​ur Überabtastung (oversampling) dar.

Funktionsweise

Die oberen 2 Diagramme zeigen Fourier-Transformationen von 2 verschiedenen Funktionen, die die gleichen Ergebnisse liefern, wenn sie mit einer bestimmten Rate abgetastet werden. Die Basisbandfunktion wird schneller abgetastet als ihre Nyquist-Frequenz, und die Bandpassfunktion wird unterabgetastet, wodurch sie effektiv in das Basisband umgewandelt wird. Die unteren Grafiken zeigen, wie identische Ergebnisse durch die Aliase des Abtastprozesses erzeugt werden.

Die Fourier-Transformationen reellwertiger Funktionen sind symmetrisch um die 0-Hz-Achse. Nach der Abtastung steht nur noch eine periodische Summation der Fourier-Transformation (zeitdiskrete Fourier-Transformation) zur Verfügung. Die einzelnen frequenzverschobenen Kopien der ursprünglichen Transformation werden Aliase genannt. Das Frequenzoffset zwischen benachbarten Aliasen ist die Abtastrate, die mit bezeichnet wird. Wenn sich die Aliase gegenseitig spektral ausschließen, können die ursprüngliche Transformation und die ursprüngliche kontinuierliche Funktion oder eine frequenzverschobene Version davon aus den Abtastwerten wiederhergestellt werden. Der erste und dritte Graph (siehe Abbildung rechts) stellen ein Basisbandspektrum dar, bevor und nachdem es mit einer Rate abgetastet wurde, die die Aliase vollständig trennt.

Der zweite Graph zeigt das Frequenzprofil einer Bandpassfunktion, die das Band (blau schattiert) und sein Spiegelbild (beige schattiert) belegt. Die Bedingung für eine verlustfreie Abtastrate ist, dass sich die Aliase beider Bänder nicht überlappen, wenn sie um alle ganzzahligen Vielfachen von verschoben werden. Der vierte Graph zeigt das spektrale Ergebnis der Abtastung mit der gleichen Rate wie die Basisbandfunktion. Die Rate wurde ausgewählt, indem die niedrigste Rate gefunden wurde, die ein ganzzahliger Teiler von A ist und auch das Basisband-Nyquist-Kriterium erfüllt: . Folglich wurde die Bandpassfunktion effektiv in das Basisband umgewandelt. Alle anderen Raten, die eine Überlappung vermeiden, werden durch diese allgemeineren Kriterien gegeben, wobei und durch bzw. ersetzt werden:

für alle ganzen Zahlen mit

Das höchste , für das die Bedingung erfüllt ist, führt zu den niedrigsten möglichen Abtastraten. Wichtige Signale dieser Art sind das Zwischenfrequenzsignal, das Hochfrequenzsignal und die einzelnen Kanäle einer Filterbank. Wenn ist, führen die Bedingungen zu dem, was manchmal als Unterabtastung, Bandpassabtastung oder Verwendung einer Abtastrate von weniger als der Nyquist-Frequenz bezeichnet wird.

Die normale Basisbandbedingung für die reversible Abtastung, dass außerhalb des Intervalls ist, und die rekonstruktive Interpolationsfunktion oder Tiefpass-Impulsantwort ist .

Um eine Unterabtastung auszugleichen, lautet die Bandpassbedingung, dass außerhalb der Vereinigung offener positiver und negativer Frequenzbänder,

die die normale Basisbandbedingung im Fall einschließt (außer dass, wo die Intervalle bei der Frequenz 0 zusammenkommen, sie geschlossen werden können). Die entsprechende Interpolationsfunktion ist der Bandpass, der sich aus dieser Differenz der Tiefpass-Impulsantworten ergibt: Bei abgetasteten Zwischenfrequenzsignalen oder Hochfrequenzsignalen hingegen ist die Rekonstruktion meist nicht das Ziel. Vielmehr kann die Abtastfolge als gewöhnliche Abtastungen des Signals behandelt werden, das in die Nähe des Basisbands frequenzverschoben ist, und auf dieser Grundlage kann die digitale Demodulation fortschreiten, wobei die Spektrumsspiegelung erkannt wird, wenn gerade ist.[1][2]

Ein Signal in Bandpasslage weist allgemein eine Bandbreite von Signalanteilen auf, die symmetrisch um die Mittenfrequenz angeordnet sind. Um die Bedingungen des Nyquist-Shannon-Abtasttheorems nicht zu verletzen, darf das Signal außerhalb der Bandbreite keine Frequenzanteile aufweisen. Dies kann unter anderem durch Bandpassfilter vor der Unterabtastung gewährleistet werden.

Mit der Abtastfrequenz verschieben alle Abtastfrequenzen

die Mittenfrequenz des Bandpasssignals auf die wählbare Bildfrequenz im Basisband. Der Wert stellt den Faktor der Unterabtastung dar, mit größer werdendem werden die Abtastfrequenzen und somit nutzbaren Basisbandbreiten immer kleiner.

Die Bildfrequenz im Basisband wird üblicherweise bei symmetrischem Bandspektrum auf den Wert festgelegt. Bei unsymmetrischen Bandspektren wird gewählt.

Unterabtastung bei symmetrischem Bandspektrum

Bei symmetrischen Bandspektrum, wie zum Beispiel der Amplitudenmodulation, steht die Information im Signal doppelt und symmetrisch um zur Verfügung. Typisch wird in diesem Fall gewählt, womit die Frequenzen im abgetasteten Signal durch

gegeben sind. Die redundante Bandhälfte wird dabei auf negative Frequenzen abgebildet, wodurch die Demodulation besonders einfach wird. Die minimale Abtastfrequenz muss größer als die Bandbreite sein, womit sich mit dieser Nebenbedingung dann der Faktor bestimmten lässt zu:

Damit entspricht d​ie Unterabtastung b​ei dem symmetrischen Bandspektrum d​er Demodulation e​iner Amplitudenmodulation.

Unterabtastung bei asymmetrischem Bandspektrum

Im Allgemeinen wird das Signal jedoch nur in eine niedrigere Zwischenfrequenzlage zur weiteren Verarbeitung verschoben (Funktion eines Mischers). Zur Erfüllung der Bedingungen des Nyquist-Shannon-Abtasttheorems wird gewählt, die Frequenzen im abgetasteten Signal sind dann:

Die minimale Abtastfrequenz muss größer als die doppelte Bandbreite sein, womit sich mit dieser Nebenbedingung dann der Faktor bestimmten lässt zu:

Nicht bandlimitierte Signale

Auswirkung der Samplingfrequenz im Verhältnis zur Signalfrequenz

Bei Unterabtastung n​icht entsprechend bandlimitierter Signale s​ind die i​m Nyquist-Shannon-Abtasttheorem genannten Voraussetzungen z​ur verlustfreien Informationsgewinnung n​icht erfüllt. Aliasing führt z​um Auftreten v​on Spiegelfrequenzanteilen, d​ie Teile d​es Nutzsignals überlagern.

Die g​raue Schwingung s​ei das analoge Signal, d​as diskretisiert (z. B. digitalisiert) werden soll. Die blauen Zahlen rechts g​eben den Wertebereich an. Ein Sample, d​as in diesen Bereich fällt, erhält d​iese digitale Zahl zugeordnet (Quantisierung). Die senkrechten Linien (S1 b​is S25) g​eben die Zeitpunkte an, z​u denen abgetastet wird. Die r​oten × verdeutlichen, i​n welchen Wertebereich d​as jeweilige Sample fällt. Die rechteckige b​laue Signalform repräsentiert d​as aus d​en digitalen Daten gewonnene Signal. (Ehe e​s einem Rekonstruktionsfilter zugeführt wird.)

In d​er Abbildung i​st zu erkennen, d​ass ab Sample 20 (S20) d​ie digitalisierten Werte d​ie abgetastete Frequenz n​icht mehr repräsentieren. Das Signal w​ird daher m​it einer deutlich geringeren Frequenz u​nd damit fehlerhaft rekonstruiert.

Literatur

  • Fernando Puente León, Uwe Kiencke, Holger Jäkel: Signale und Systeme. 5. Auflage. Oldenbourg, 2011, ISBN 978-3-486-59748-6.

Einzelnachweise

  1. Walt Kester: Mixed-signal and DSP design techniques
  2. Hiroshi Harada, Ramjee Prasad: Simulation and Software Radio for Mobile Communications
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.