Tits-System
Ein Tits-System (oft synonym auch BN-Paar genannt) wird in der mathematischen Disziplin der Gruppentheorie benutzt, um viele Resultate aus der Theorie der halbeinfachen Lie-Gruppen, der algebraischen Gruppen und der endlichen Gruppen vom Lie-Typ einheitlich formulieren und beweisen zu können. Außerdem bilden die Tits-Systeme das algebraische Gegenstück zur Gebäude-Theorie. Der Begriff wurde von Jacques Tits eingeführt.
Definition
Ein Tits-System besteht aus einem 4-Tupel , wobei eine Gruppe ist, und Untergruppen von sind und eine Menge von Nebenklassen von in ist, sodass folgende vier Axiome erfüllt sind:
T 1: Die Gruppe wird von und erzeugt. Außerdem ist ein Normalteiler in . T 2: Die Faktorgruppe wird von der Menge erzeugt und es gilt für alle . T 3: Für und gilt . T 4: Für ist keine Teilmenge von .
Die Nummerierung T1 bis T4 stammt aus Tits' Originalarbeit.
Beispiele
- Oft wird als Standardbeispiel die Gruppe der invertierbaren -Matrizen über einem Körper angegeben. Hierbei ist die Untergruppe der oberen Dreiecksmatrizen. Für die Gruppe nehmen wir alle Matrizen, die in jeder Zeile und in jeder Spalte genau einen Eintrag ungleich Null haben. Die Gruppe wird dann genau zu der Gruppe der Diagonalmatrizen und ist kanonisch isomorph zur symmetrischen Gruppe über Elementen. Die Menge besteht aus den Permutationen, die zwei benachbarte Elemente vertauschen.
- Sei allgemeiner eine reduktive algebraische Gruppe und eine Borel-Untergruppe, die einen maximalen Torus enthält. Sei der Normalisator von in und ein minimales Erzeugendensystem von . Dann ist ein Tits-System.
- Sei eine Menge mit mindestens drei Elementen und eine Untergruppe der Permutationsgruppe von , sodass zweifach transitiv auf wirkt. Weiterhin seien zwei unterschiedliche Elemente gegeben. Dann sei der Stabilisator von in und sei definiert als die Gruppe, die die Menge als Menge fixiert, d. h. die Elemente und werden entweder beide fixiert oder vertauscht. Dann ergibt sich als punktweiser Stabilisator der Menge . Die Faktorgruppe hat Ordnung 2 und die Menge besteht nur aus einem einzigen Element und dieses entspricht der Vertauschung von und .
Anmerkungen
Man kann zeigen, dass die Menge eindeutig festgelegt ist, wenn von einem Tits-System nur die Gruppen gegeben sind. Da außerdem die Gruppe von und erzeugt wird, steckt die gesamte Information über das Tits-System in den Gruppen und . Deswegen hat sich auch die Bezeichnung BN-Paar eingebürgert.
Bruhat-Zerlegung
Ein wichtiges Resultat, das sich im allgemeinen Rahmen von Tits-Systemen beweisen lässt, ist die sogenannte Bruhat-Zerlegung: Wenn ein Tits-System gegeben ist, dann gilt
,
wobei eine disjunkte Vereinigung ist, das heißt ist so gewählt, dass für die Mengen und disjunkt sind.
Anwendungen
Wenn bei einem Tits-System noch die folgenden Zusatzeigenschaften erfüllt sind:
- ist auflösbar
- Der Schnitt aller Konjugate von ist trivial
- Die Menge lässt sich nicht in zwei disjunkte nichtkommutierende Teilmengen zerlegen
- ist perfekt
Dann ist die Gruppe eine einfache Gruppe. Oft ist es sehr leicht, die ersten drei Eigenschaften nachzuprüfen und es bleibt nur noch die Perfektheit von zu zeigen, was deutlich einfacher ist, als direkt zu zeigen, dass eine einfache Gruppe ist. Dieses Resultat benutzt man zum Beispiel bei der Klassifikation der einfachen endlichen Gruppen, um zu zeigen, dass die meisten endlichen Gruppen vom Lie-Typ einfach sind.
Zusammenhang mit Gebäudetheorie
Oft ist es hilfreich, Gruppen zu untersuchen, indem man sie auf interessanten geometrischen Objekten wirken lässt. Jedem Tits-System lässt sich auf kanonische Art und Weise ein geometrisches Objekt zuordnen, genannt Gebäude, sodass auf diesem Gebäude wirkt. Umgekehrt lässt sich auch jedem Gebäude ein Tits-System zuordnen, sodass die gruppentheoretische Theorie der Tits-Systeme in gewisser Art und Weise äquivalent zur geometrischen Theorie der Gebäude ist.
Weblinks
- Jacques Tits: Formes quadratiques, groupes orthogonaux et algèbres de Clifford. Inventiones Mathematicae 1968
- Mark Ronan Buildings