Spinorbündel
Ein Spinorbündel – auch Spinbündel[1] genannt – ist ein mathematisches Objekt aus der Differentialgeometrie beziehungsweise der globalen Analysis. Es ist eine spezielle Art eines Vektorbündels über einer Mannigfaltigkeit. Spinorbündel können nur für Spin-Mannigfaltigkeiten definiert werden. Dies sind spezielle riemannsche Mannigfaltigkeiten mit einer Spinstruktur auf dem Tangentialbündel. Ob ein Tangentialbündel mit einer Spinstruktur ausgestattet werden kann, kann durch die zweite Stiefel-Whitney-Klasse gemessen werden.
Der Raum der glatten Schnitte eines Spinorbündels wird auch als Raum der Spinoren oder Spinorfelder bezeichnet und dient als eine natürliche Definitionsmenge für den Dirac-Operator.
Das mathematische Teilgebiet, das sich mit Spinorbündeln und Spin-Mannigfaltigkeiten sowie mit verwandten Themen, wie zum Beispiel Dirac-Operatoren und deren Indextheorie beschäftigt, wird als Spin-Geometrie bezeichnet.[2]
Spinstruktur
Sei eine riemannsche Mannigfaltigkeit und ein orientiertes hermitesches Vektorbündel der Dimension . Mit wird die Spin-Gruppe von bezeichnet. Sie kann als eine zweiblättrige Überlagerung der orthogonalen Gruppe aufgefasst werden. Eine Spinstruktur auf ist ein -Hauptfaserbündel zusammen mit einer zweiblättrigen Überlagerung
des -Hauptfaserbündels , so dass für alle und alle gilt.[3]
Spin-Mannigfaltigkeit
Eine Spin-Mannigfaltigkeit ist eine orientierbare riemannsche Mannigfaltigkeit, die eine Spinstruktur auf ihrem Tangentialbündel erlaubt.[4]
Da die Stiefel-Whitney-Klasse einer Mannigfaltigkeit definiert ist als die Stiefel-Whitney-Klasse ihres Tangentialbündels ist, bedeutet das, dass eine orientierbare riemannsche Mannigfaltigkeit genau dann eine Spinstruktur zulässt, wenn gilt. Dann werden die verschiedenen Spinstrukturen von den Elementen von bestimmt.[5]
Definition des Spinorbündels
Sei eine riemannsche Mannigfaltigkeit mit gerader Dimension und einer Spinstruktur auf dem Tangentialbündel , also kurz eine Spin-Mannigfaltigkeit mit gerader Dimension. Sei die Darstellung der komplexen Clifford-Algebra (auch Spinor-Modul genannt). Die -Gruppe hat als Teilmenge von ebenfalls eine Darstellung .
Das Spinorbündel über der Mannigfaltigkeit ist definiert als das assoziierte komplexe Vektorbündel[6]
Hierbei bezeichnet das Faserprodukt von mit über . In diesem konkreten Fall bedeutet dies
für , und .
Literatur
- Thomas Friedrich: Dirac-Operatoren in der Riemannschen Geometrie. Mit einem Ausblick auf die Seiberg-Witten-Theorie. Friedr. Vieweg & Sohn, Braunschweig, 1997. ISBN 3-528-06926-0.
Einzelnachweise
- Thomas Friedrich: Dirac-Operatoren in der Riemannschen Geometrie. Mit einem Ausblick auf die Seiberg-Witten-Theorie. Friedr. Vieweg & Sohn, Braunschweig, 1997. ISBN 3-528-06926-0, S. 467–468.
- spin geometry. In: nlab. Abgerufen am 31. März 2021 (englisch).
- H. B. Lawson, M. Michelsohn: Spin Geometry. Princeton University Press, 1989, ISBN 978-0-691-08542-5, S. 80.
- H. B. Lawson, M. Michelsohn: Spin Geometry. Princeton University Press, 1989, ISBN 978-0-691-08542-5, S. 96.
- H. B. Lawson, M. Michelsohn: Spin Geometry. Princeton University Press, 1989, ISBN 978-0-691-08542-5, S. 96–97.
- Nicole Berline, Ezra Getzler, Michèle Vergne: Heat kernels and Dirac operators (= Grundlehren der mathematischen Wissenschaften 298). Berlin u. a. Springer 1992, ISBN 0-387-53340-0, S. 111.