Satz von Serre und Swan

In d​er Mathematik stellt d​er Satz v​on Serre u​nd Swan e​inen Zusammenhang zwischen Vektorbündeln u​nd projektiven Moduln oder, i​n K-theoretischer Formulierung, zwischen d​er K-Theorie e​ines Raumes u​nd seiner Funktionenalgebra her.

Vektorbündel und projektive Moduln

Zu einem Vektorbündel über einem topologischen Raum sei der Vektorraum seiner Schnitte. Dieser ist ein Modul über dem Ring der stetigen Funktionen.

Man kann zeigen, dass ein endlich erzeugter, projektiver -Modul ist.

Sei die Halbgruppe der Isomorphieklassen der Vektorbündel über mit der Whitney-Summe als Verknüpfung und die Halbgruppe der Isomorphieklassen endlich erzeugter, projektiver -Moduln. Die auf Vertretern definierte Zuordnung

ist wohldefiniert und ein Homomorphismus von Monoiden, das heißt, es gilt . In dieser Formel wird nicht zwischen Isomorphieklassen und Vertretern daraus unterschieden, was wegen der Wohldefiniertheit möglich ist.

Der Satz von Serre und Swan besagt, dass für einen kompakten Hausdorff-Raum diese Zuordnung eine Bijektion ist.

K-theoretische Formulierung

Da die topologische K-Theorie eines Raumes die Grothendieck-Gruppe der Halbgruppe und die topologische K-Theorie der Banachalgebra die Grothendieck-Gruppe der Halbgruppe ist, folgt aus dem Satz von Serre und Swan unmittelbar der Isomorphismus

für jeden kompakten Hausdorff-Raum .

Literatur

  • Jean-Pierre Serre: Faisceaux algébriques cohérents. In: Annals of Mathematics. 61 (2), 197–278 (1955).
  • Richard Swan: Vector bundles and projective modules. In: Transactions of the American Mathematical Society. 105 (2), 264–277 (1962).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.