Satz von Lovász-Stein

Der Satz von Lovász-Stein, benannt nach den Mathematikern László Lovász und Sherman K. Stein, ist ein Lehrsatz des mathematischen Teilgebiets der Graphentheorie. Der Satz formuliert eine Ungleichung, welche die kleinste Anzahl von Hyperkanten, die zur Überdeckung der gesamten Knotenmenge eines gegebenen endlichen Hypergraphen benötigt wird, zu anderen Kennziffern dieses Hypergraphen in Beziehung setzt.[1]

Formulierung des Satzes

Der Darstellung von Stasys Jukna folgend lässt sich der Satz wie folgt formulieren:[1]

Seien natürliche Zahlen.
Sei dazu ein endlicher Hypergraph, bestehend aus einer endlichen Knotenmenge mit Knoten und einem System von Hyperkanten.
Dabei sei vorausgesetzt, dass
jeder Knoten mindestens den Grad hat
und
jede Hyperkante aus höchstens Knoten besteht.
Weiter sei
die kleinste Anzahl von Hyperkanten, die benötigt wird, um die gesamte Knotenmenge zu überdecken.
Dann gilt:
.

Anwendung auf spezielle Blockpläne

Der Satz gibt als Anwendung eine obere Abschätzung über gewisse Anzahlen von Blöcken bei sogenannten Überdeckungsblockplänen.

Dabei ist ein Überdeckungsblockplan (englisch covering design) ein -uniformer Hypergraph, dessen Knoten bzw. Hyperkanten aufgefasst werden als Punkte bzw. Blöcke eines Blockplans mit der Eigenschaft, dass je verschiedene Punkte in mindestens einem der Blöcke enthalten sind (mit ). Sind die Kennziffern gegeben, so wird die kleinste unter den möglichen Anzahlen mit bezeichnet.

Dabei ist stets

.

Mit dem Satz von Lovász-Stein lässt sich nun nach oben abschätzen:[2]

.

Quellen und Hintergrundliteratur

Einzelnachweise

  1. Stasys Jukna: Extremal Combinatorics. 2011, S. 34 ff
  2. Stasys Jukna: Extremal Combinatorics. 2011, S. 37–38
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.