Rochus Schmid

Rochus Peter Schmid (* 1968 i​n Pullach) i​st ein deutscher Chemiker u​nd seit 2015 Professor a​m Lehrstuhl für Anorganische Chemie II d​er Ruhr-Universität Bochum.

Leben

Rochus Schmid besuchte v​on 1974 b​is 1978 d​ie Grundschule Pullach u​nd wechselte 1978 a​n das Gymnasium Pullach, w​o er i​m Juni 1987 s​ein Abitur m​it Note 1,3 bestand. Danach studierte e​r bis 1993 Chemie a​n der TU München. Im Dezember 1993 b​ekam Rochus Schmid s​ein Diplom verliehen, welches m​it Note „sehr gut“ dotiert ist. Vier Jahre später verteidigte Rochus Schmid s​eine Doktorarbeit (Summa c​um laude) m​it dem Titel Theoretische Untersuchungen a​n katalyserelevanten Übergangsmetall-Komplexen u​nd bekam seinen Doktortitel. Nach seinen Postdoc a​n der University o​f Calgary arbeitete e​r in mehreren Forschungseinrichtungen u​nd an mehreren Universitäten. Seit 2015 i​st Rochus Schmid Professor für Anorganische Chemie a​n der Ruhr-Universität Bochum u​nd erforscht Computerchemie.[1]

Forschung

Bekannt w​urde Schmid für s​eine Arbeit a​n der Forschung u​m die Beladung v​on hochporösen Koordinationspolymeren Wirtsgitter d​urch metallorganische chemische Gasphasenabscheidung[2] Heutzutage leitet Schmid e​ine Forschungsgruppe a​n der Ruhr-Universität Bochum. Die Forschung d​er Gruppe konzentriert s​ich auf d​ie Entwicklung u​nd Anwendung theoretischer Methoden z​ur Simulation komplexer Systeme i​n der Materialchemie a​uf atomistischer Ebene. Sie versuchen, atomistische Modelle z​u entwickeln, d​ie in d​er Lage sind, d​ie Längen- u​nd Zeitskalen z​u überbrücken u​nd damit d​as eigentliche Problem b​ei der Simulation v​on Materialsystemen z​u überwinden.

Publikationen (Auswahl)

  • S. Amirjalayer, M. Tafipolsky, R. Schmid, Molecular Dynamics Simulation of Benzene Diffusion in MOF-5: Importance of Lattice Dynamics, Angew. Chem. Int. Ed. 46, 463 (2007)[3]
  • R. Schmid, M. Tafipolsky, An Accurate Force Field Model for the Strain Energy Analysis of the Covalent Organic Framework COF-102, J. Am. Chem. Soc. 130, 12600 (2008)[4]
  • M. Tafipolsky, R. Schmid, Systematic First Principles Parameterization of Force Fields for Metal-Organic Frameworks using a Genetic Algorithm Approach, J. Phys. Chem. B 113, 1341 (2009)[5]
  • S. Amirjalayer, M. Tafipolsky, R. Schmid, Exploring Network Topologies of Copper Paddle-Wheel based Metal-Organic Frameworks with a First Principles Derived Force Field, J. Phys. Chem. C 115, 15133 (2011)[6]
  • S. Bureekaew, S. Amirjalayer, R. Schmid, Orbital directing effects in copper and zinc based paddle-wheel metal organic frameworks: the origin of flexibility, J. Mater. Chem. 22, 10249 (2012)[7]
  • S. Bureekaew, S. Amirjalayer, M. Tafipolsky, C. Spickermann, T. K. Roy, R. Schmid, MOF-FF - A flexible first principles derived Force Field for Metal-Organic Frameworks, Phys. Stat. Sol. B 250, 1128 (2013)[8]
  • H. Oh, S. B. Kalidindi, Y. Um, S. Bureekaew, R. Schmid, R. A. Fischer, M. Hirscher, A Cryogenically Flexible Covalent Organic Framework for Efficient Hydrogen Isotope Separation by Quantum Sieving, Angew. Chem. Int. Ed. 52, 13219 (2013)[9]
  • Z. Fang, J. P. Dürholt, M. Kauer, W. Zhang, C. Lochenie, B. Jee, B. Albada, N. Metzler-Nolte, A. Pöppl, B. Weber, M. Muhler, Y. Wang, R. Schmid, R. A. Fischer, Structural Complexity in Metal‑Organic Frameworks: Simultaneous Modification of Open Metal Sites and Hierarchical Porosity by Systematic Doping with Defective Linkers, J. Am. Chem. Soc. 136, 9627 (2014)[10]
  • S. Amirjalayer, M. Tafipolsky, R. Schmid, Surface Termination of the Metal-Organic Framework HKUST-1: A Theoretical Investigation, J. Phys. Chem. Lett. 5, 3206 (2014)[11]
  • B. Konkena, K. Puring, I. Sinev, S. Piontek, O. Khavryuchenko, J. Dürholt, R. Schmid, H. Tüysüz, M. Muhler, W. Schuhmann, U. Apfel, Pentlandite rocks as sustainable and stable efficient electrocatalysts for hydrogen generation, Nature Comm. 7, 12269 (2016)[12]

Einzelnachweise

  1. CMC group webpage. Abgerufen am 19. April 2021.
  2. Stephan Hermes, Marie-Katrin Schröter, Rochus Schmid, Lamma Khodeir, Martin Muhler: Metal@MOF: Loading of Highly Porous Coordination Polymers Host Lattices by Metal Organic Chemical Vapor Deposition. In: Angewandte Chemie International Edition. Band 44, Nr. 38, 2005, ISSN 1521-3773, S. 6237–6241, doi:10.1002/anie.200462515 (wiley.com [abgerufen am 19. April 2021]).
  3. Saeed Amirjalayer, Maxim Tafipolsky, Rochus Schmid: Molecular Dynamics Simulation of Benzene Diffusion in MOF-5: Importance of Lattice Dynamics. In: Angewandte Chemie International Edition. Band 46, Nr. 3, 2007, ISSN 1521-3773, S. 463–466, doi:10.1002/anie.200601746 (wiley.com [abgerufen am 20. April 2021]).
  4. Rochus Schmid, Maxim Tafipolsky: An Accurate Force Field Model for the Strain Energy Analysis of the Covalent Organic Framework COF-102. In: Journal of the American Chemical Society. Band 130, Nr. 38, 24. September 2008, ISSN 0002-7863, S. 12600–12601, doi:10.1021/ja804734g.
  5. Maxim Tafipolsky, Rochus Schmid: Systematic First Principles Parameterization of Force Fields for MetalOrganic Frameworks using a Genetic Algorithm Approach. In: The Journal of Physical Chemistry B. Band 113, Nr. 5, 5. Februar 2009, ISSN 1520-6106, S. 1341–1352, doi:10.1021/jp807487f.
  6. Saeed Amirjalayer, Maxim Tafipolsky, Rochus Schmid: Exploring Network Topologies of Copper Paddle Wheel Based Metal–Organic Frameworks with a First-Principles Derived Force Field. In: The Journal of Physical Chemistry C. Band 115, Nr. 31, 11. August 2011, ISSN 1932-7447, S. 15133–15139, doi:10.1021/jp200123g.
  7. Sareeya Bureekaew, Saeed Amirjalayer, Rochus Schmid: Orbital directing effects in copper and zinc based paddle-wheel metal organic frameworks: the origin of flexibility. In: Journal of Materials Chemistry. Band 22, Nr. 20, 1. Mai 2012, ISSN 1364-5501, S. 10249–10254, doi:10.1039/C2JM15778K (rsc.org [abgerufen am 20. April 2021]).
  8. Sareeya Bureekaew, Saeed Amirjalayer, Maxim Tafipolsky, Christian Spickermann, Tapta Kanchan Roy: MOF-FF – A flexible first-principles derived force field for metal-organic frameworks. In: physica status solidi (b). Band 250, Nr. 6, 2013, ISSN 1521-3951, S. 1128–1141, doi:10.1002/pssb.201248460 (wiley.com [abgerufen am 20. April 2021]).
  9. Hyunchul Oh, Suresh Babu Kalidindi, Youngje Um, Sareeya Bureekaew, Rochus Schmid: A Cryogenically Flexible Covalent Organic Framework for Efficient Hydrogen Isotope Separation by Quantum Sieving. In: Angewandte Chemie International Edition. Band 52, Nr. 50, 2013, ISSN 1521-3773, S. 13219–13222, doi:10.1002/anie.201307443 (wiley.com [abgerufen am 20. April 2021]).
  10. Zhenlan Fang, Johannes P. Dürholt, Max Kauer, Wenhua Zhang, Charles Lochenie: Structural Complexity in Metal–Organic Frameworks: Simultaneous Modification of Open Metal Sites and Hierarchical Porosity by Systematic Doping with Defective Linkers. In: Journal of the American Chemical Society. Band 136, Nr. 27, 9. Juli 2014, ISSN 0002-7863, S. 9627–9636, doi:10.1021/ja503218j.
  11. Saeed Amirjalayer, Maxim Tafipolsky, Rochus Schmid: Surface Termination of the Metal-Organic Framework HKUST-1: A Theoretical Investigation. In: The Journal of Physical Chemistry Letters. Band 5, Nr. 18, 18. September 2014, S. 3206–3210, doi:10.1021/jz5012065.
  12. Bharathi Konkena, Kai junge Puring, Ilya Sinev, Stefan Piontek, Oleksiy Khavryuchenko: Pentlandite rocks as sustainable and stable efficient electrocatalysts for hydrogen generation. In: Nature Communications. Band 7, Nr. 1, 27. Juli 2016, ISSN 2041-1723, S. 12269, doi:10.1038/ncomms12269 (nature.com [abgerufen am 20. April 2021]).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.