Riemannscher homogener Raum

Im mathematischen Gebiet d​er Differenzialgeometrie i​st ein Riemannscher homogener Raum (häufig a​uch nur Homogener Raum) e​in Raum, d​er „in a​llen Punkten gleich aussieht“.

Definition

Ein Riemannscher homogener Raum ist eine Riemannsche Mannigfaltigkeit , deren Isometriegruppe transitiv wirkt, d. h. zu je zwei Punkten gibt es eine Isometrie mit .

Beschreibung mittels Lie-Gruppen

Jeder Riemannsche homogene Raum i​st von d​er Form

für eine Lie-Gruppe und eine kompakte Untergruppe .

Umgekehrt ist für eine Lie-Gruppe und eine abgeschlossene Untergruppe der Quotientenraum eine Hausdorffsche differenzierbare Mannigfaltigkeit und jedes unter der adjungierten Wirkung von auf der Lie-Algebra invariante Skalarprodukt definiert eine links-invariante Riemannsche Metrik, mit der ein Riemannscher homogener Raum wird. Ein solches -invariantes Skalarprodukt auf existiert genau dann, wenn kompakt ist.

Riemannsche Metrik

Ein Riemannscher homogener Raum hat nach Definition eine -invariante Metrik, die sich zu einer links-invarianten Metrik auf hochheben lässt. Die Quotientenabbildung ist bzgl. dieser Metriken eine Riemannsche Submersion. Insbesondere kann man die Krümmung von mit der O’Neill-Formel berechnen, wenn man die Krümmung von kennt.

Beispiele

  • Jede Lie-Gruppe mit einer links-invarianten Metrik ist ein Riemannscher homogener Raum.
  • Jeder symmetrische Raum ist ein Riemannscher homogener Raum.
  • Es gibt nicht-Riemannsche homogene Räume mit einer nicht-kompakten Untergruppe .

Literatur

  • Jeff Cheeger, David G. Ebin: Comparison theorems in Riemannian geometry. North-Holland Mathematical Library, Vol. 9. North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.