Rationaler Funktionenkörper

Ein Rationaler Funktionenkörper i​st ein Begriff a​us dem mathematischen Teilgebiet d​er Algebra. Dieses Objekt h​at die algebraische Struktur e​ines Körpers.

Definition

Der rationale Funktionenkörper ist der Quotientenkörper des Polynomrings über einem Körper . Die Konstruktion von ist analog zu jener der rationalen Zahlen aus den ganzen Zahlen. Die Elemente können also als mit Polynomen , wobei nicht das Nullpolynom ist, geschrieben werden.

Anmerkungen und Eigenschaften

Die Namensgebung i​st traditionell, a​ber mit e​twas Vorsicht z​u genießen:

  • Erstens muss man die Unterschiede zwischen Polynomen und Polynomfunktionen betrachten. Jedes Polynom induziert eine Polynomfunktion, aber die Zuordnung Polynom Polynomfunktion ist nur dann injektiv, wenn der Körper unendlich ist. Beispiel: Ist der Körper mit 2 Elementen, so induzieren und die gleiche Funktion auf . Trotzdem sind sie als Elemente des rationalen Funktionenkörpers nicht gleich.
  • Zweitens hat in der Regel der Nenner Nullstellen. Dementsprechend ist die rationale Funktion nicht auf ganz definiert, sondern nur auf einer Zariski-offenen Teilmenge.

Beispiel: Für gilt zwar als rationale Funktion auf im Sinne der obigen Definition – aber der Definitionsbereich ist leer.

Die Körpererweiterung ist rein transzendent und damit insbesondere unendlich. Es lässt sich mit Hilfe der verallgemeinerten Partialbruchzerlegung sogar eine -Basis des -Vektorraums angeben.

In mehreren Variablen

Definition

Der rationale Funktionenkörper in den Variablen ist analog definiert als der Quotientenkörper des Polynomrings .

Konstruktion

Der rationale Funktionenkörper kann durch sukzessives Adjungieren einer Variablen und anschließendes Bilden des Quotientenkörpers konstruiert werden. Also:

ist der Quotientenkörper des Polynomrings , also des Polynomrings über dem Körper in der Variable

Funktionenkörper in der algebraischen Geometrie

In der algebraischen Geometrie werden Funktionenkörper von affinen Varietäten betrachtet: Sei der Körper algebraisch abgeschlossen und eine affine Varietät im . Dann ist das Ideal ein Primideal im Polynomring , weshalb der Koordinatenring , d. h. der Quotientenring , ein Integritätsbereich ist.

Der Quotientenkörper des Koordinatenrings heißt dann Funktionenkörper von . Seine Elemente heißen rationale Funktionen auf und dürfen tatsächlich als Funktionen auf (nicht leeren) offenen Teilmengen von betrachtet werden.

Literatur

  • Siegfried Bosch: Algebra. 8. Auflage. Springer Spektrum, Berlin 2013, ISBN 978-3-642-39566-6, S. 63, doi:10.1007/978-3-642-39567-3 ( und ).
  • Klaus Hulek: Elementare Algebraische Geometrie. 2. Auflage. Springer Spektrum, Wiesbaden 2012, ISBN 978-3-8348-1964-2, S. 41, doi:10.1007/978-3-8348-2348-9 (Algebraische Geometrie).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.