Primitives Polynom

In der Theorie mathematischer Körper ist ein primitives Polynom das Minimalpolynom einer primitiven -ten Einheitswurzel einer Körpererweiterung über endlicher Körper. Anders ausgedrückt ist ein Polynom mit den Koeffizienten aus ein primitives Polynom, wenn es eine Nullstelle in hat, so dass die Menge der ganze Körper ist und außerdem das Polynom mit dem kleinsten Grad mit als Nullstelle ist.

Eigenschaften

Da a​lle Minimalpolynome irreduzibel sind, s​ind primitive Polynome ebenso irreduzibel.

Ein primitives Polynom muss einen von Null verschiedenen konstanten Term haben, da es andernfalls durch teilbar wäre. Über einem Körper aus zwei Elementen ist ein primitives Polynom und alle anderen primitiven Polynome haben eine ungerade Anzahl von Termen, da jedes Polynom modulo 2 mit einer geraden Anzahl von Termen durch teilbar ist.

Ein irreduzibles Polynom des Grades über für eine Primzahl ist ein primitives Polynom, wenn die kleinste ganze Zahl ist, für die ein Teiler von ist.

Über dem Körper gibt es genau primitive Polynome des Grades , wobei die Eulersche φ-Funktion ist.

Die Nullstellen eines primitiven Polynoms haben alle die Ordnung .

Anwendungen

Darstellung von Körper-Elementen

Primitive Polynome werden für die Darstellung von Elementen eines endlichen Körpers verwendet. Wenn eine Nullstelle eines primitiven Polynoms ist, dann hat die Ordnung , das heißt alle Elemente von können als aufeinanderfolgende Potenzen von dargestellt werden:

Wenn diese Elemente modulo reduziert werden, dann bildet die Darstellung als polynomielle Basis aller dieser Elemente einen Körper.

Da die multiplikative Gruppe eines endlichen Körpers immer eine zyklische Gruppe ist, ist für ein primitives Polynom das Element ein Generator der multiplikativen Gruppe in .

Erzeugung von Pseudo-Zufallszahlen

Primitive Polynome definieren e​ine wiederkehrende Relation, d​ie verwendet werden k​ann um Bits v​on Pseudozufallszahlen z​u erzeugen. Tatsächlich s​teht jedes linear rückgekoppelte Schieberegister m​it maximalem Zyklus (dieser i​st 2lrsr length - 1) m​it primitiven Polynomen i​n Beziehung.

Sei z. B. ein primitives Polynom gegeben. Man beginnt mit einem benutzerdefinierten Startwert (engl. seed, Saatkorn, dieser muss nicht unbedingt zufällig gewählt werden). Man nimmt dann das 10-te, 3-te und 0-te Bit, gezählt vom niederwertigsten Bit, verknüpft diese mit XOR und erhält ein neues Bit. Die Saatzahl wird dann nach links verschoben und das neue Bit wird zum niederwertigsten Bit der Saatzahl. Dies kann wiederholt werden um Pseudo-Zufalls-Bits zu erzeugen. Für eine Maximum Length Sequence sind ganz bestimmte Ausgänge des Schieberegisters erforderlich.[1]

Allgemein gilt für ein primitives Polynom des Grades , dass dieser Vorgang Pseudo-Zufallszahlen erzeugt, bevor die Sequenz sich wiederholt.

Primitive Trinome

Primitive Trinome sind primitive Polynome mit nur drei von Null verschiedenen Termen. Die Trinome sind sehr einfach und werden für sehr effiziente Zufallszahlengeneratoren verwendet. Es gibt verschiedene Methoden, um primitive Trinome zu ermitteln und zu prüfen. Ein einfacher Test funktioniert wie folgt: Für jedes , für das eine Mersenne-Primzahl ist, ist ein Trinom des Grades primitiv, genau dann wenn es irreduzibel ist. Durch kürzlich von Richard P. Brent entwickelte Algorithmen ist es möglich geworden, primitive Trinome von hohem Grad zu finden, wie z. B. . Damit können Pseudozufallsgeneratoren mit einer riesigen Periode von , oder ca. erzeugt werden.[2]

Literatur

  • Elwyn R. Berlekamp: Algebraic Coding Theory, Revised Edition. 2. Auflage. Aegean Park Press, 1984, ISBN 0-89412-063-8.
  • Peterson, W.W., Weldon, E.J., "Error correcting codes", Cambridge, The MIT – Press, 1972
  • Anderson, G.C., Finnie, B. W., "Pseudo-random and random test signals", HP-Journal 19,Nr.1,2 1967

Einzelnachweise

  1. Tietze/Schenk, "Halbleiter-Schaltungstechnik", 3. Auflage 1976, S.590 ff, in späteren Auflagen nicht mehr beschrieben.
  2. Search for Primitive Trinomials (mod 2).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.