Lemma von Bramble-Hilbert

In der Mathematik, besonders in der numerischen Analysis, schätzt das Bramble-Hilbert-Lemma, benannt nach James H. Bramble und Stephen R. Hilbert, den Fehler bei Approximation einer Funktion durch ein Polynom der maximalen Ordnung mit Hilfe der Ableitungen -ter Ordnung von ab. Sowohl der Approximationsfehler als auch die Ableitungen von werden durch -Normen auf einem beschränkten Gebiet im gemessen. In der klassischen numerischen Analysis entspricht dies einer Fehlerschranke mit Hilfe der zweiten Ableitungen von bei linearer Interpolation von . Jedoch gilt das Bramble-Hilbert-Lemma auch in höheren Dimensionen, und der Approximationsfehler und die Ableitungen von können dabei durch allgemeinere Normen gemessen werden, nämlich nicht nur in der Maximumnorm, sondern auch in gemittelten -Normen.

Zusätzliche Regularitätsannahmen an den Rand des Gebiets sind für das Lemma von Bramble-Hilbert erforderlich. Lipschitz-Stetigkeit des Randes ist hierfür ausreichend, insbesondere gilt das Lemma für konvexe Gebiete und -Gebiete.

Die Hauptanwendung des Lemmas von Bramble-Hilbert ist der Nachweis von Fehlerschranken mit Hilfe der Ableitungen bis zur -ten Ordnung für den Fehler bei Approximation durch einen Operator, der Polynome der Ordnung höchstens erhält. Das ist ein wesentlicher Schritt beim Nachweis von Fehlerschätzungen für die Finite-Elemente-Methode. Das Lemma von Bramble-Hilbert wird dort auf dem Gebiet angewandt, das aus einem Element besteht.

Formulierung

Es sei ein beschränktes Gebiet im mit Lipschitz-Rand und Durchmesser . Weiter sei beliebig und .

Auf dem Sobolew-Raum , verwendet man die Halbnorm

Das Lemma von Bramble-Hilbert besagt nun, dass zu jedem ein Polynom existiert, dessen Grad höchstens beträgt, so dass die Ungleichung

mit einer Konstanten erfüllt ist.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.