Ladungskonjugation

Die Ladungskonjugation o​der C-Parität (für englisch Charge = Ladung) ersetzt i​n quantenmechanischen Zuständen j​edes Teilchen d​urch sein Antiteilchen. Sie spiegelt s​o das Vorzeichen d​er Ladung u​nd lässt Masse, Impuls, Energie u​nd Spin j​edes Teilchens unverändert.

Die elektromagnetische und die starke Wechselwirkung sind invariant unter Ladungskonjugation (kurz C-invariant), d. h., bei Streuung oder Zerfall verhalten sich die ladungsgespiegelten Zustände wie die ursprünglichen Zustände.
Dagegen ist die Schwache Wechselwirkung nicht C-invariant (Paritätsverletzung): Der Anteil des Elektrons, der bei schwachen Wechselwirkungen in ein Elektron-Neutrino und ein -Boson übergehen kann, wird bei Ladungskonjugation durch den Teil des Positrons ersetzt, der nicht an die -Bosonen koppelt.

Ladungskonjugation des Dirac-Feldes

Das Dirac-Feld wird bei Ladungskonjugation auf das Feld transformiert, das mit umgekehrter Ladung an die elektromagnetischen Potentiale koppelt. Wenn die Dirac-Gleichung (über den doppelten Index ist zu summieren)

erfüllt, dann soll das ladungskonjugierte Feld der Gleichung

genügen.

Komplex Konjugieren d​er ersten Gleichung ergibt

Es erfüllt also die ladungskonjugierte Gleichung, wenn eine Matrix ist, für die gilt:

Solch eine Matrix gibt es für jede Darstellung der Dirac-Matrizen, denn alle irreduziblen Darstellungen der Dirac-Algebra sind einander äquivalent, und stellt die Dirac-Algebra ebenso dar wie

Schreibt man , so hat das ladungskonjugierte Feld die Form

mit der Ladungskonjugationsmatrix

Wegen erfüllt die Ladungskonjugationsmatrix

In d​er Dirac-Darstellung d​er Gamma-Matrizen k​ann die Ladungskonjugationsmatrix als

so gewählt werden, dass sie reell, antisymmetrisch und unitär ist,

Eigenwerte und Eigenzustände

Für einen Eigenzustand des C-Operators gilt

,

wobei der Eigenwert die sogenannte C-Parität des entsprechenden Eigenzustandes (im weiteren Sinne also Teilchens) bezeichnet. Da der C-Operator eine Involution (Mathematik) ist und demnach (ähnlich zum Paritätsoperator) den Eigenzustand bei zweifacher Wirkung invariant lässt, gilt ferner

,

sodass nur die Eigenwerte erlaubt sind. Insbesondere können nur neutrale Systeme (elektrische Ladung, Strangeness, Baryonenzahl, … = 0) Eigenzustände des C-Paritätsoperators sein, d. h. das Photon sowie gebundene Teilchen-Antiteilchen-Zustände wie das neutrale Pion oder das Positronium.

Literatur

  • Claude Itzykson, Jean-Bernard Zuber: Quantum Field Theory. McGraw-Hill, New York 1980, ISBN 0-07-032071-3.

Siehe auch

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.