Kanonischer Divisor

In d​er Funktionentheorie i​st der kanonische Divisor e​in Begriff a​us der Theorie riemannscher Flächen.

Definition

Sei eine riemannsche Fläche und eine meromorphe 1-Form. Der kanonische Divisor von ist der Divisor

.

Dabei ist

für eine Darstellung in einer lokalen Koordinate . Der Wert von hängt nur von und nicht vom gewählten Koordinatensystem ab.

Für verschiedene meromorphe 1-Formen auf einer riemannschen Fläche erhält man äquivalente kanonische Divisoren, d. h. ihre Differenz ist ein Hauptdivisor. Die Äquivalenzklasse des kanonischen Divisors ist also unabhängig von der gewählten meromorphen 1-Form wohldefiniert.

Eigenschaften

Der Grad des kanonischen Divisors ist , wobei das Geschlecht der riemannschen Fläche ist.

Der Satz von Riemann-Roch stellt für beliebige Divisoren einen Zusammenhang zwischen den Dimensionen der Lösungsräume von und her.

Literatur

  • Otto Forster: Riemannsche Flächen. (= Heidelberger Taschenbücher 184). Springer, Berlin u. a. 1977, ISBN 3-540-08034-1.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.