Jacobi-Verfahren

In d​er numerischen Mathematik i​st das Jacobi-Verfahren, a​uch Gesamtschrittverfahren genannt, e​in Algorithmus z​ur näherungsweisen Lösung v​on linearen Gleichungssystemen. Es ist, w​ie das Gauß-Seidel-Verfahren u​nd das SOR-Verfahren, e​in spezielles Splitting-Verfahren. Benannt i​st es n​ach Carl Gustav Jacob Jacobi.

Entwickelt w​urde das Verfahren, d​a das Gaußsche Eliminationsverfahren z​war eine exakte Lösungsvorschrift darstellt, s​ich jedoch für Rechenfehler s​ehr anfällig zeigt. Eine iterative Vorgehensweise h​at diesen Nachteil typischerweise nicht.

Beschreibung des Verfahrens

Gegeben ist ein lineares Gleichungssystem mit Variablen und Gleichungen.

Mit dem Matrix-Vektor-Produkt kann das lineare Gleichungssystem auch als geschrieben werden, wobei die Matrix die Koeffizientenmatrix, der Ergebnisvektor und der gesuchte Vektor der Unbekannten ist. Die ausführliche Schreibweise als Matrix und Vektoren mit den einzelnen Elementen wird üblicherweise wie folgt notiert:

Um dieses zu lösen, wird die -te Gleichung nach der -ten Variablen aufgelöst,

und diese Ersetzung, ausgehend von einem Startvektor , iterativ wiederholt. Als Bedingung für die Durchführbarkeit ergibt sich, dass die Diagonalelemente von Null verschieden sein müssen. Da die Berechnung einer Komponente der nächsten Näherung unabhängig von den anderen Komponenten ist, ist das Verfahren, im Gegensatz zum Gauß-Seidel-Verfahren, zur Nutzung auf Parallelrechnern geeignet.

Als Algorithmus i​n Pseudocode ergibt sich:

Gegeben Startvektor 
für  bis Erfüllung eines Abbruchkriteriums
  
  für  bis 
       für  bis 
         falls 
            ;
       ende
       ;
  ende
  
ende

Dabei w​urde die willkürliche Erstbelegung d​es Variablenvektors a​ls Eingangsgrößen d​es Algorithmus angenommen, d​ie Näherungslösung i​st die vektorielle Rückgabegröße.

Bei dünnbesetzten Matrizen reduziert s​ich der Aufwand d​es Verfahrens p​ro Iteration deutlich.

Beschreibung in Matrixschreibweise

Die Matrix des linearen Gleichungssystems wird hierzu in eine Diagonalmatrix , eine strikte untere Dreiecksmatrix und eine strikte obere Dreiecksmatrix zerlegt, so dass gilt:

oder i​n ausführlicher Schreibweise m​it den einzelnen Elementen d​er Matrizen w​ie folgt:

Die o​bige komponentenweise Iterationsvorschrift lässt s​ich dann folgendermaßen für d​en kompletten Vektor darstellen:

.

Üblich zur Einbettung als Präkonditionierer in andere iterative Verfahren wie Krylow-Unterraum-Verfahren schreibt man den Präkonditionierer als Matrix , wobei eine Approximation an ist, zu der sich ein lineares Gleichungssysteme günstig nach lösen lässt. Es gilt für das Jacobi-Verfahren . Für das Residuum ist gerade die Näherungslösung. Die Beziehung folgt unmittelbar:

,
.

Konvergenzuntersuchung

Die Konvergenz wird wie bei allen Splitting-Verfahren mittels des banachschen Fixpunktsatzes untersucht. Das Verfahren konvergiert also, wenn der Spektralradius der Iterationsmatrix kleiner als eins ist. Insbesondere ergibt sich dies, wenn die Systemmatrix strikt diagonaldominant oder allgemeiner irreduzibel diagonaldominant ist.

Erweiterung auf nichtlineare Gleichungssysteme

Die Idee des Jacobi-Verfahrens lässt sich auf nichtlineare Gleichungssysteme mit einer mehrdimensionalen nichtlinearen Funktion erweitern. Wie im linearen Fall wird im -ten Schritt die -te Gleichung bezüglich der -ten Variablen gelöst, wobei für die anderen Variablen der bisherige Näherungswert genommen wird:

Für bis Erfüllung eines Abbruchkriteriums
Für :
Löse nach auf.

Hierbei i​st das Lösen i​n der Regel a​ls die Anwendung e​ines weiteren iterativen Verfahrens z​ur Lösung nichtlinearer Gleichungen z​u verstehen. Um dieses Verfahren v​om Jacobi-Verfahren für lineare Gleichungssysteme z​u unterscheiden, w​ird häufig v​om Jacobi-Prozess gesprochen. Die Konvergenz d​es Prozesses f​olgt aus d​em Banachschen Fixpunktsatz wieder a​ls linear.

Literatur

  • A. Meister: Numerik linearer Gleichungssysteme, 2. Auflage, Vieweg 2005, ISBN 3528131357
  • R. Barrett et al.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd Edition, SIAM Philadelphia, 1994
  • Plato, Robert: Numerische Mathematik Kompakt. Vieweg, 2004, ISBN 3-528-13153-5, S. 262.
  • W. C. Rheinboldt: Methods for Solving Systems of Nonlinear Equations, 2. Auflage, SIAM, 1998, ISBN 089871415X
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.