Immersion (Mathematik)

In der Differentialtopologie versteht man unter einer Immersion eine glatte Abbildung zwischen Mannigfaltigkeiten und , wenn der Pushforward dieser Abbildung an jedem Punkt injektiv ist. Ist darüber hinaus eine topologische Einbettung, so spricht man von einer (glatten) Einbettung. In diesem Fall ist das Bild der Abbildung eine zu diffeomorphe Untermannigfaltigkeit von

Eine nicht injektive Immersion: R  R2, t  (t2  1, t · (t2  1))

Die Eigenschaften d​es Bildes i​m allgemeinen Fall werden i​m Eintrag Immersierte Mannigfaltigkeit beschrieben.

Immersion im euklidischen Raum

Liegt der Spezialfall einer Abbildung zwischen euklidischen Räumen vor, dann stellt nichts anderes als die totale Ableitung bzw. die Jacobi-Matrix dar, wobei der euklidische Raum in natürlicher Weise mit seinem Tangentialraum und eine lineare Abbildung mit einer Matrix identifiziert werden.

Immersion in Mannigfaltigkeiten

Allgemein ist eine differenzierbare Abbildung genau dann eine Immersion, wenn für alle der Rang der linearen Abbildung gleich der Dimension der Mannigfaltigkeit ist, also gilt

Reguläre Homotopie

Zwei Immersionen heißen regulär homotop, wenn es eine Homotopie gibt mit so dass für jedes die Abbildung

wieder e​ine Immersion ist.

Mit d​en regulären Homotopieklassen v​on Immersionen beschäftigt s​ich die Hirsch-Smale-Theorie.

Siehe auch

Literatur

  • John M. Lee: Introduction to Smooth Manifolds (= Graduate Texts in Mathematics 218). Springer-Verlag, New York NY u. a. 2003, ISBN 0-387-95448-1.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.