Halbeinfache Lie-Gruppe

In d​er Mathematik i​st eine halbeinfache Lie-Gruppe e​ine zusammenhängende Lie-Gruppe, d​eren Lie-Algebra halbeinfach ist.

Äquivalente Charakterisierungen

Eine zusammenhängende Lie-Gruppe i​st genau d​ann halbeinfach, w​enn sie e​ine der folgenden äquivalenten Bedingungen erfüllt:

Beispiele

Maximal kompakte Untergruppe

Zu einer halbeinfachen Lie-Gruppe gibt es eine bis auf Konjugation eindeutige maximale kompakte Untergruppe . Beispielsweise ist SO(n) eine maximal kompakte Untergruppe von und SU(n) eine maximal kompakte Untergruppe von .

Symmetrischer Raum

Sei eine maximal kompakte Untergruppe der (nicht-kompakten) halbeinfachen Lie-Gruppe . Der Quotient ist ein symmetrischer Raum von nichtkompaktem Typ.

Der duale symmetrische Raum wird mit bezeichnet. Seine Isometriegruppe ist eine kompakte Lie-Gruppe.

Literatur

  • Brian C. Hall: Lie groups, Lie algebras, and representations. An elementary introduction. (= Graduate Texts in Mathematics. 222). Springer-Verlag, New York 2003, ISBN 0-387-40122-9.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.