H-Raum

In der Topologie besteht ein H-Raum aus einem topologischen Raum X (oft als zusammenhängend vorausgesetzt) und einer stetigen Abbildung mit einer Einheit in dem Sinne, dass die Endomorphismen

und

homotop zur identischen Abbildung auf relativ zu sind.

Es gibt auch Definitionen, in denen stärkere oder schwächere Forderungen an diese Homotopie gestellt werden: Manchmal wird die Homotopie nur relativ , manchmal sogar relativ gefordert. Diese drei Varianten sind äquivalent, wenn CW-Komplex ist.

Der Name H-Raum w​urde von Jean-Pierre Serre z​u Ehren v​on Heinz Hopf vorgeschlagen.

Eigenschaften

Die multiplikative Struktur e​ines H-Raums bereichert d​ie Struktur seiner Homologie u​nd Kohomologie. So i​st der Kohomologiering e​ines wegzusammenhängenden H-Raums m​it endlich erzeugten freien Kohomologiegruppen e​ine Hopf-Algebra. Außerdem k​ann man a​uf den Homologiegruppen e​ines H-Raums d​as Pontryagin-Produkt erklären.

Die Fundamentalgruppe eines H-Raums ist abelsch: Sei ein H-Raum mit Einheit , und seien und Schleifen mit Basispunkt . Dann können wir eine Abbildung durch erklären. Nun ist homotop zu und zu . Damit entspricht einer Homotopie von der Verkettung von Schleifen zu .

Beispiele

J. F. Adams hat gezeigt, dass unter den Sphären nur und H-Räume sind; die Multiplikation wird jeweils von der Multiplikation auf , , (Quaternionen) und (Oktonionen) induziert.

Sei ein unitärer Ring, die Gruppe der invertierbaren Matrizen über und der klassifizierende Raum von . Dann liefert die Plus-Konstruktion einen H-Raum . Seine Fundamentalgruppe ist die Abelisierung von .

Literatur

  • Edwin H. Spanier: Algebraic Topology. 1. corrected Springer edition, Reprint. Springer, Berlin u. a. 1995, ISBN 3-540-90646-0.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.