Gruppe der rationalen Punkte auf dem Einheitskreis

Die Gruppe der rationalen Punkte auf dem Einheitskreis besteht aus den Punkten mit rationalen Koordinaten, für die gilt. Die Menge dieser Punkte ist eng mit den primen pythagoräischen Tripeln verwandt. Ist ein primitives rechtwinkliges Dreieck mit ganzzahligen teilerfremden Seitenlängen gegeben, wobei die Hypotenuse ist, dann gibt es auf dem Einheitskreis den rationalen Punkt . Ist umgekehrt ein rationaler Punkt auf dem Einheitskreis, dann gibt es ein primitives rechtwinkliges Dreieck mit den Seiten , wobei das kleinste gemeinsame Vielfache der Nenner von und ist.

Gruppenoperation

Die Menge der rationalen Punkte bildet eine unendliche Abelsche Gruppe. Das neutrale Element ist der Punkt . Die Gruppenoperation oder „Summe“ ist . Geometrisch ist dies die Winkeladdition, wenn und , wobei der Winkel des Radiusvektors mit dem Radiusvektor im mathematisch positiven Sinne ist. Wenn also und jeweils mit die Winkel und bilden, ist deren Summe der rationale Punkt auf dem Einheitskreis mit dem Winkel im Sinne der gewöhnlichen Addition von Winkeln.

Identifiziert man jeweils den Punkt mit der komplexen Zahl , so entspricht die Addition in der Multiplikation in .

Gruppenstruktur

Die Gruppe ist isomorph zu einer unendlichen direkten Summe von zyklischen Untergruppen von :

wobei die durch erzeugte Untergruppe ist, und die jene Untergruppen sind, die von Punkten der Form mit erzeugt werden, wobei eine Pythagoreische Primzahl ist.

Diese Aussage i​st eine Anwendung v​on Hilberts Satz 90 a​uf das Problem d​er rationalen Punkte a​uf dem Einheitskreis, s​iehe dazu bei: Lin Tan.

Literatur

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.