GARCH-Modelle

GARCH-Modelle (GARCH, Akronym für: Generalized AutoRegressive Conditional Heteroscedasticity, deutsch verallgemeinerte autoregressive bedingte Heteroskedastizität) bzw. verallgemeinerte autoregressive Modelle m​it bedingter Heteroskedastizität o​der auch verallgemeinerte autoregressive bedingt heteroskedastische Zeitreihenmodelle s​ind stochastische Modelle z​ur Zeitreihenanalyse, d​ie eine Verallgemeinerung d​er ARCH-Modelle (autoregressive conditional heteroscedasticity) sind. Sie werden beispielsweise i​n der Ökonometrie b​ei der Analyse d​er Renditen v​on Aktienkursen z​ur Modellierung d​es Volatilitätsclusterings verwendet. GARCH-Modelle wurden 1986 v​on Tim Bollerslev a​uf der Grundlage d​es ARCH-Modells v​on Robert F. Engle (1982) entwickelt.

Definition

Eine Zeitreihe heißt GARCH(p,q)-Zeitreihe, wenn sie rekursiv definiert ist durch[1]

wobei reelle, nichtnegative Parameter mit und sind, und der Prozess aus unabhängigen identisch verteilten Zufallsvariablen mit und besteht.

Bei einem GARCH-Modell hängt also die bedingte Varianz von von ihrer eigenen Vergangenheit und der Vergangenheit der Zeitreihe ab.

Erweiterungen

T-GARCH

T-GARCH-Modelle sind keine echten GARCH-Modelle, sondern verallgemeinern diese wie folgt:
Mit einer gegebenen Wahrscheinlichkeit p, z. B. p=0.999, entsprechen sie dem "normalen" GARCH und mit Wahrscheinlichkeit 1-p einem vorher festgelegten Wert. Mit diesen nicht-linearen Modellen können dann zum Beispiel Börsencrashs oder Ähnliches simuliert werden.[2]

COGARCH

Claudia Klüppelberg, Alexander Lindner u​nd Ross Maller stellten 2004 e​ine zeitstetige Erweiterung d​es zeitdiskreten GARCH(1,1)-Prozesses vor. Man beginnt dafür m​it den GARCH(1,1)-Gleichungen

und ersetzt die unabhängig identisch verteilten Zufallsvariablen formal durch die infinitesimalen Inkremente eines Lévy-Prozesses sowie deren Quadrate durch die Inkremente , wobei

der rein unstetige Teil des quadratischen Variationsprozesses von ist. Man erhält also das System

von stochastischen Differentialgleichungen, wobei sich die positiven Parameter , und aus , und bestimmen lassen. Hat man nun eine Anfangsbedingung gegeben, so hat das obige System eine pfadweise eindeutige Lösung , die dann als COGARCH-Modell (continuous-time GARCH) bezeichnet wird.[3]

Siehe auch

Literatur

  • T. Bollerslev: Generalized Autoregressive Conditional Heteroskedasticity. In: Journal of Econometrics. Vol. 31, No. 3, 1986, S. 307–327, doi:10.1016/0304-4076(86)90063-1.
  • J. Franke, W. Härdle, C. M. Hafner: Statistics of Financial Markets: An Introduction. 2. Auflage. Springer, Berlin/ Heidelberg/ New York 2008, ISBN 978-3-540-76269-0.

Referenzen

  1. Jens-Peter Kreiß, Georg Neuhaus: Einführung in die Zeitreihenanalyse. Springer-Verlag, Berlin/ Heidelberg 2006, ISBN 3-540-25628-8, S. 298f.
  2. Dissertation zu T-GARCH
  3. C. Klüppelberg, A. Lindner, R. Maller: A continuous-time GARCH process driven by a Lévy process: stationarity and second-order behaviour. In: Journal of Applied Probability. Band 41, Nr. 3, 2004, S. 601–622, doi:10.1239/jap/1091543413.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.