Flavour changing neutral current
Flavour changing neutral currents (englisch für Flavour verändernde neutrale Ströme), kurz FCNC, sind ein Phänomen der Elementarteilchenphysik, bei dem sich Quarks oder Leptonen verschiedener Generationen mit der gleichen elektrischen Ladung unter Aussendung eines elektrisch neutralen Eichbosons ineinander umwandeln können.
FCNC existieren nicht als fundamentale Wechselwirkung im Standardmodell der Elementarteilchenphysik; sie treten nur in Diagrammen höherer Ordnung auf und sind daher stark unterdrückt. Einige Theorien jenseits des Standardmodells sagen neue Wechselwirkungen voraus, die fundamentale FCNC erlauben.[1]
Im Standardmodell treten im Rahmen der schwachen Wechselwirkung dagegen auf:
- nicht Flavour verändernde neutrale Ströme
- Flavour verändernde geladene Ströme.
Standardmodell
Im Standardmodell existieren drei elektrisch neutrale Eichbosonen:
- das Photon als Vermittler der Quantenelektrodynamik
- das Gluon für die Quantenchromodynamik
- das Z-Boson als eines der drei Bosonen der schwachen Wechselwirkung.
Photon und Gluon koppeln an die Masseneigenzustände der Teilchen und führen zu keiner Veränderung des Flavours. Das Z-Boson hingegen koppelt an die Eigenzustände der schwachen Wechselwirkung. Diese sind eine Superposition der Masseneigenzustände, sodass prinzipiell eine Flavour-Veränderung möglich erscheint. Diese tritt jedoch wegen des Glashow-Iliopolus-Maiani-Mechanismus' nicht auf. Glashow, Iliopolus und Maiani postulierten 1970 die Existenz eines vierten Quarks, des Charm-Quarks, sodass der neutrale Strom des Z-Bosons sowohl im Raum der Masseneigenzustände als auch im Raum der Eigenzustände der schwachen Wechselwirkung diagonal ist. Seien die Masseneigenzustände des Down- bzw. Strange-Quarks und die Eigenzustände der schwachen Wechselwirkung, dann gilt:
In höheren Ordnungen sind FCNC nicht verboten. Diese werden durch einen W-Loop induziert, da die geladenen Ströme der W-Bosonen in der schwachen Wechselwirkung immer zu einer Flavour-Veränderung führen und aufgrund der Mischung der Zustände die Quark-Generation verändern können. Im Quark-Sektor sind diese Prozesse aufgrund der höheren Ordnung bereits um den Faktor unterdrückt ( ist die Feinstrukturkonstante). Im leptonischen Sektor muss zusätzlich, da die Masseneigenzustände der geladenen Leptonen gleichzeitig die Eigenzustände der schwachen Wechselwirkung sind, eine Neutrinooszillation auftreten.
Experimentelle Suche
Aktuell ist das Mu3e-Experiment am Paul-Scherrer-Institut geplant, welches das Auftreten von FCNC untersuchen und seine Wahrscheinlichkeit ermitteln soll. Der Zerfallskanal, nach dem dies Experiment sucht, ist:
- ,
bei dem sich netto ein Antimyon in ein Positron unter Aussendung eines Elektron-Positron-Paars umwandelt.[3] Im Standardmodell liegt das vorhergesagte Verzweigungsverhältnis dieses Myon-Zerfalls bei unter 10−12; ein solcher Prozess tritt also einmal unter mehr als einer Billion Zerfällen auf.[4]
Einzelnachweise
- vgl. z. B. Kaori Fuyuto, Wei-Shu Hou und Masaya Kohda: Z' induced FCNC decays of top, beauty and strange quarks. In: Phys Rev. D. Band 93, Nr. 5, 2016, S. 054021-1–054021–19, doi:10.1103/PhysRevD.93.054021 (englisch).
- Ian J. R. Aitchison und Anthony J. G. Hey: Gauge Theories in Particle Physics. 2. Auflage. Institute of Physics Publishing, Bristol 1989, ISBN 0-85274-329-7, S. 366–371 (englisch).
- The Mu3e Experiment. Abgerufen am 8. März 2019 (englisch).
- PDG Booklet. (PDF) Abgerufen am 8. März 2019 (englisch).
Literatur
- T. Morii, C. S. Lim und S. N. Mukherjee: The Physics of the Standard Model and Beyond. World Scientific Publishing, Singapur 2004, ISBN 981-02-4571-8, S. 215–247 (englisch).