Faddeeva-Funktion
Die Faddeeva-Funktion (auch Kramp-Funktion oder relativistische Plasma-Dispersions-Funktion) ist eine skalierte komplexe komplementäre Fehlerfunktion,
Sie ist verwandt mit den Fresnel-Integralen, den Dawson-Integralen und dem Voigt-Profil. Die Funktion ist nach Wera Nikolajewna Faddejewa benannt.
Geschichte
Die Funktion wurde 1954 von Wera Faddejewa und Terentjew tabuliert.[1] Sie erscheint als namenlose Funktion im Standardwerk von Abramowitz-Stegun (1964), Formel 7.1.3. Der Name Faddeeva function wurde anscheinend 1990 von Poppe und Wijers eingeführt.[2]
Literatur
- W. Gautschi ACM Transactions on Mathematical Software (1969?): ACM Algorithmus 363.
- W. Gautschi SIAM J. Numer. Anal. 7, 187 (1970).
- G. P. M. Poppe, C. M. J. Wijers, ACM Transactions on Mathematical Software 16, 38–46 (1990): ACM Algorithm 680.
- J. A. C. Weideman, SIAM J. Numer. Anal. 31, 1497–1518 (1994): Besonders kompakter Algorithmus in 8 Zeilen Matlab.
- M. R. Zaghloul and A. N. Ali, ACM Transactions on Mathematical Software 38, 15 (2011): ACM Algorithm 916.
- S. M. Abrarov and B. M. Quine, Appl. Math. Comp. 218, 1894–1902 (2011).
- S. M. Abrarov and B. M. Quine, Arxiv, Preprint 2012
Implementierungen
Steven G. Johnson hat eine Implementierung als freie und offene Software veröffentlicht, die auf einer Kombination der Algorithmen 680 und 916 beruht.[3] Sie liegt der Funktion scipy.special.wofz
in der Python-Bibliothek SciPy zugrunde, und sie ist auch in Form einer C-Bibliothek libcerf verfügbar.[4]
Quellen
- V. N. Faddeeva, N. N. Terent'ev: Tables of values of the function for complex argument. Gosud. Izdat. Teh.-Teor. Lit., Moscow, 1954; English transl., Pergamon Press, New York, 1961.
- Google-Scholar-Recherche laut engl. Wikipedia.
- Faddeeva Package, unter MIT-Lizenz.
- http://apps.jcns.fz-juelich.de/libcerf