Ernst Heintze

Ernst Heintze (* 6. April 1944 i​n Neubrandenburg)[1] i​st ein deutscher Mathematiker, d​er sich m​it Differentialgeometrie befasst.

Ernst Heintze 1973

Heintze studierte a​b 1964 Mathematik i​n Berlin, Freiburg u​nd Bonn m​it dem Diplom 1969 i​n Bonn u​nd der Promotion 1970 i​n Bonn b​ei Wilhelm Klingenberg (Krümmung u​nd Topologie d​es Raumes SU(5)/(Sp(2) x S1)).[2] Danach w​ar er Assistent i​n Bonn, w​o er s​ich 1976 habilitierte. 1973 w​ar er a​n der University o​f California, Berkeley a​ls Gastwissenschaftler. 1978 w​urde er Professor a​n der Universität Münster u​nd 1985 a​n der Universität Augsburg.

Nach i​hm sind d​ie Heintze-Gruppen benannt.

Werke (Auswahl)

  • On homogeneous manifolds of negative curvature. Math. Ann. 211 (1974), 23–34.
  • mit H.-C. Im Hof: Geometry of horospheres. J. Differential Geom. 12 (1977), no. 4, 481–491.
  • mit J. Brüning: Representations of compact Lie groups and elliptic operators. Invent. Math. 50 (1978/79), no. 2, 169–203.
  • mit H. Karcher: A general comparison theorem with applications to volume estimates for submanifolds. Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 4, 451–470.
  • Extrinsic upper bounds for λ1. Math. Ann. 280 (1988), no. 3, 389–402.
  • mit Xiaobo Liu: Homogeneity of infinite-dimensional isoparametric submanifolds. Ann. of Math. (2) 149 (1999), no. 1, 149–181.
  • mit Chr. Groß: Finite order automorphisms and real forms of affine Kac-Moody algebras in the smooth and algebraic category. Mem. Amer. Math. Soc. 219 (2012), no. 1030, ISBN 978-0-8218-6918-5

Einzelnachweise

  1. Geburts- und Karrieredaten nach Michael Toeppell, Mitgliedergesamtverzeichnis der DMV 1890-1990, München 1991
  2. Ernst Heintze im Mathematics Genealogy Project (englisch) Vorlage:MathGenealogyProject/Wartung/id verwendet
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.