Cesàro-Kurve

Bei der Cesàro-Kurve handelt es sich um ein strikt selbstähnliches Fraktal, das um 1905 von Ernesto Cesàro beschrieben wurde. Sie stellt eine Verallgemeinerung der bekannten Koch-Kurve dar. Der Initiator ist wie dort ebenfalls die Einheitsstrecke, jedoch wird der Basiswinkel des von der Kurve umschlossenen gleichschenkligen Dreiecks, der bei der Koch-Kurve θ = 60 ° beträgt, variabel im Bereich von θ = 0 ° bis θ = 90 °. Somit ergibt sich die Cesàro-Kurve als eine Kurvenschar mit dem Parameter θ.

Verschiedene Cesàro-Kurven

Zehn verschiedene Cesàro-Kurven von θ = 0 ° bis θ = 90 ° in Schritten von 10°

In Abhängigkeit vom Parameter θ ergeben sich sehr unterschiedliche Kurven. Für θ = 0° erhält man die Einheitsstrecke, da es zu keiner Längenzunahme kommt. Mit zunehmendem θ wirkt die Kurve rauer und zerklüfteter, da ihre fraktale Dimension von 1 bei θ = 0° bis auf 2 bei 90° steigt, wo die Kurve schließlich ein gleichschenkliges Dreieck mit der Fläche 1/4 ausfüllt. In diesem Fall handelt es sich daher um eine fraktale Füllkurve.

Die fraktale Dimension lässt sich anhand der folgenden Formel bestimmen:

Die Fläche unterhalb der Cesàro-Kurve

Die Fläche "unterhalb" der Kurve (also zwischen Kurve und Initiator) ergibt sich als Funktion einer Reihe über den Parameter :[1]

Dabei steigt die Fläche von bei bis auf bei an.

Einzelnachweise

  1. Grundlagen der fraktalen Geometrie mit iterierten Funktionensystemen (IFS), A. Jablonski, (Online)

Literatur

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.