Fraktale Dimension

In d​er Mathematik i​st die fraktale Dimension e​iner Menge e​ine Verallgemeinerung d​es Dimensionsbegriffs v​on geometrischen Objekten w​ie Kurven (eindimensional) u​nd Flächen (zweidimensional), insbesondere b​ei Fraktalen. Das Besondere ist, d​ass die fraktale Dimension k​eine ganze Zahl s​ein muss. Es g​ibt unterschiedliche Möglichkeiten, e​ine fraktale Dimension z​u definieren.

Boxcounting-Dimension

Bei der Boxcounting-Methode überdeckt man die Menge mit einem Gitter der Gitterbreite . Wenn die Zahl der von der Menge belegten Boxen ist, so ist die Box-Dimension

.

Tatsächlich kann man andere Arten von Überdeckungen (Kreise bzw. Kugeln, sich überschneidende Quadrate etc.) wählen und genauso berechnen, und das Ergebnis ist theoretisch dasselbe, in der numerischen Praxis (wenn man den Limes nicht ausrechnen kann) aber nicht unbedingt.

Yardstick-Methode

Diese Methode eignet sich nur für topologisch eindimensionale Mengen, also für Kurven. Man misst deren Länge durch Abzirkeln. Der Schnittpunkt eines Kreises (bzw. Kugel in einbettender Dimension 3) mit der Kurve ist wiederum der neue Mittelpunkt des nächsten Kreises. So wird die Kurve mit Kreisen des gleichen Radius überdeckt. Mit der Anzahl und dem Radius dieser Kreise verfährt man weiter wie bei der Boxcounting-Methode. Tatsächlich ist die Yardstick-Methode theoretisch lediglich ein Spezialfall der Boxcounting-Methode.

Minkowski-Dimension

Umgibt man eine Menge mit einer Minkowskiwurst der Dicke und misst deren -dimensionales Volumen , so lässt sich damit eine zu der Box-Dimension äquivalente Dimension definieren:

,
.

Ähnlichkeits-Dimension

Mengen, die aus um den Faktor verkleinerten Versionen ihrer selbst bestehen, heißen selbstähnlich. Für diese ist die Ähnlichkeitsdimension

definiert. Man beachte, d​ass man h​ier keinen Limes braucht.

Beispiel: Ein Quadrat besteht aus vier Quadraten () der halben () Kantenlänge und hat damit . Aber schon ein Kreis besteht nicht aus verkleinerten Kreisen, und die Ähnlichkeitsdimension ist nicht definiert. Die Dimension vieler bekannter Fraktale lässt sich aber damit bestimmen. Aufgrund der fehlenden Limesbildung ist die Ähnlichkeitsdimension besonders einfach und ist deshalb oft die einzige für Laien verständliche fraktale Dimension. Diese Methode der Dimensionsberechnung drängt sich insbesondere auch bei IFS-Fraktalen auf.

Hausdorff-Dimension

Die Hausdorff-Dimension, oder Hausdorff-Besicovitch-Dimension, benannt nach Felix Hausdorff und Abram Samoilowitsch Besikowitsch, ist die maßtheoretische Definition der fraktalen Dimension. Das -dimensionale Hausdorffmaß nimmt fast überall entweder den Wert 0 oder den Wert an. Die Stelle , an der der Sprung von nach 0 stattfindet, ist die Hausdorff-Dimension.

Natürliche Fraktale

Entfernt man sich von der mathematischen Idealisierung und betrachtet Mengen wie Küstenlinien, Mondkrater oder einfach nur digitalisierte Bilder von Fraktalen, so lässt sich wegen der endlichen Auflösung der Grenzwertübergang nicht mehr durchführen. Man würde stets die Dimension 0 erhalten, weil man eine endliche Menge von Punkten betrachtet. Stattdessen macht man sich die Eigenschaft der Skaleninvarianz zunutze und bestimmt die Dimension durch Auftragung von gegen im sogenannten Log-Log-Plot. Skaliert , dann weist dieser Plot zumindest im Bereich kleiner -Werte die Steigung auf. Ist der Skalierungsbereich hinreichend groß (mehrere Dekaden), so spricht man von natürlichen Fraktalen.

Theoretisch äquivalente Definitionen d​er fraktalen Dimension s​ind in dieser numerischen Variante n​icht mehr gleich. So erweist s​ich die Yardstick-Dimension m​eist als größer a​ls die Box-Dimension.

Rényi-Dimensionen Dq

Das Besondere der Rényi-Dimensionen ist, dass sie sich nicht auf eine Menge, sondern auf ein Maß (bzw. eine Dichte) beziehen. Man kann allerdings auch die Punktdichte einer Menge nehmen. Geht man von der Boxcounting-Methode aus, so zählt nicht nur, ob eine Box besetzt ist oder nicht, sondern auch, wie viel in der Box ist. Der normierte Inhalt der Box wird zur -ten Potenz erhoben und über alle Boxen summiert:

.

Für liefert die Regel von de L’Hospital:

.

Die Rényi-Dimension zu ist die normale fraktale Dimension. Die zu heißt auch Informationsdimension und die zu Korrelationsdimension. Maße, die unterschiedliche Dimensionen bis haben, heißen auch Multifraktale.

Eigenschaften und Zusammenhang zwischen den Dimensionen

  • Die fraktale Dimension einer Menge ist größer oder gleich der Dimension einer Teilmenge.
  • Alle fraktalen Dimensionen eines Gegenstandes sind, sofern definiert, überraschend häufig gleich groß. Ansonsten sind Ungleichungen bekannt, so ist beispielsweise die Hausdorff-Dimension stets kleiner oder gleich der Boxcounting-Dimension.
  • Die fraktale Dimension ist stets größer oder gleich der topologischen Dimension.
  • Die fraktale Dimension ist stets kleiner oder gleich der einbettenden Dimension.

Anwendungen

Die fraktale Dimension k​ann in d​er Oberflächenphysik z​ur Charakterisierung v​on Oberflächen u​nd zur Klassifizierung u​nd zum Vergleich v​on Oberflächenstrukturen verwendet werden.[1]

Einzelnachweise

  1. Markus Bautsch: Rastertunnelmikroskopische Untersuchungen an mit Argon zerstäubten Metallen, Kapitel 2.5: Fraktale Dimension von Oberflächen, Verlag Köster, Berlin (1993), ISBN 3-929937-42-5
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.