Arens-Fort-Raum

Der Arens-Fort-Raum, benannt n​ach den Mathematikern R. F. Arens u​nd M. K. Fort, i​st ein speziell konstruiertes Beispiel e​ines topologischen Raumes, d​er auf Grund seiner Eigenschaften o​ft als Gegenbeispiel verwendet wird.

Definition

Typische Nullumgebung, nur die Spalten 2,3 und 5 enthalten nicht fast alle Punkte.

Die zugrunde liegende Menge ist , also die Menge aller Paare natürlicher Zahlen . Die Teilmenge heißt -te Spalte. Die Menge wird zu einem topologischen Raum, dem Arens-Fort-Raum, indem die folgenden Mengen als offen erklärt werden:

  • Jede Menge in , die den Nullpunkt nicht enthält.
  • Jede Menge, die den Nullpunkt und alle bis auf endlich viele Punkte in allen außer endlich vielen Spalten enthält.

Topologische Eigenschaften

Fehlende Eigenschaften

  • Der Arens-Fort-Raum genügt weder dem ersten noch dem zweiten Abzählbarkeitsaxiom.
  • Der Arens-Fort-Raum ist nicht metrisierbar.
  • Der Arens-Fort-Raum ist nicht kompakt.

Gegenbeispiele

  • In metrischen Räumen folgt aus der Separabilität das zweite Abzählbarkeitsaxiom. Der Arens-Fort-Raum zeigt, dass dies im Allgemeinen nicht gilt, denn er ist separabel (er besteht selbst nur aus abzählbar vielen Punkten), genügt aber nach Obigem nicht dem zweiten Abzählbarkeitsaxiom.
  • Zählt man die Punkte aus wie bei Cantors erstem Diagonalargument ab, so erhält man eine Folge , die immer wieder Folgenglieder in jeder Spalte und damit in jeder Nullumgebung hat.
ist einziger Häufungspunkt dieser Folge, aber keine Teilfolge dieser Folge konvergiert gegen .
und
definierten Funktionen , so konvergiert die Funktionenfolge punktweise gegen . Da genau die endlichen Mengen kompakt sind, liegt sogar kompakte Konvergenz vor. Jede Funktion ist stetig, denn sie ist auf der Nullumgebung konstant gleich 0, aber die Grenzfunktion ist unstetig, da sie in jeder Nullumgebung den Wert 1 annimmt. Insbesondere liegt keine lokal gleichmäßige Konvergenz vor, denn sonst müsste die Grenzfunktion stetig sein.

Literatur

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.