Absolutstetige Wahrscheinlichkeitsverteilung
Die absolutstetigen (Wahrscheinlichkeits-)Verteilungen, auch absolutstetige Wahrscheinlichkeitsmaße genannt sind eine spezielle Klasse von Wahrscheinlichkeitsmaßen in der Stochastik. Sie zeichnen sich dadurch aus, dass sie über ein Integral und eine Wahrscheinlichkeitsdichtefunktion definiert bzw. dargestellt werden können.
Sie sind zwar eng mit den stetigen Wahrscheinlichkeitsverteilungen verwandt, aber nicht mit ihnen identisch.
Definition
Ein Wahrscheinlichkeitsmaß auf heißt absolutstetig, wenn es absolutstetig bezüglich des Lebesgue-Maßes ist.[1] Das bedeutet, dass jede -Nullmenge auch eine -Nullmenge ist.
Nach dem Satz von Radon-Nikodým ist dies äquivalent dazu, dass eine Wahrscheinlichkeitsdichtefunktion besitzt. Das bedeutet, es gilt für alle mit
- .
Bemerkung
Streng genommen müsste man die Wahrscheinlichkeitsdichtefunktion so definieren, dass klar ist, dass es sich um eine Dichte bezüglich des Lebesgue-Maßes handelt. In der Stochastik sind jedoch Dichten bezüglich anderer Maße als des Lebesgue-Maßes selten, daher wird oft auf die Angabe verzichtet.
Bei dem Integral handelt es sich streng genommen um ein Lebesgue-Integral. Häufig wird dieses jedoch wie hier durch ein Riemann-Integral ersetzt, dann schreibt man anstelle von .
Abgrenzung zu den stetigen Wahrscheinlichkeitsverteilungen
Als stetige Wahrscheinlichkeitsverteilungen werden diejenigen Wahrscheinlichkeitsverteilungen bezeichnet, die eine stetige Verteilungsfunktion besitzen.[2] Auf Maße übertragen bedeutet das, dass die stetigen Wahrscheinlichkeitsverteilungen atomlos sind, also keine einzelnen Punkte mit besitzen.
Nach der Lebesgue-Zerlegung lassen sich atomlose Maße weiter aufspalten:
- In einen absolutstetigen Anteil. Dieser entspricht den absolutstetigen Wahrscheinlichkeitsverteilungen.
- In einen singulären Anteil. Dieser entspricht den stetigsingulären Wahrscheinlichkeitsverteilungen.
Somit ist jede absolutstetige Wahrscheinlichkeitsverteilung immer eine stetige Wahrscheinlichkeitsverteilung. Aber nicht jede stetige Wahrscheinlichkeitsverteilung ist eine absolutstetige Wahrscheinlichkeitsverteilung. Beispiel hierfür ist die Cantor-Verteilung: Ihre Verteilungsfunktion ist stetig, aber sie besitzt keine Wahrscheinlichkeitsdichtefunktion.
Literatur
- Hans-Otto Georgii: Stochastik. Einführung in die Wahrscheinlichkeitstheorie und Statistik. 4. Auflage. Walter de Gruyter, Berlin 2009, ISBN 978-3-11-021526-7, doi:10.1515/9783110215274.
- Klaus D. Schmidt: Maß und Wahrscheinlichkeit. 2., durchgesehene Auflage. Springer-Verlag, Heidelberg Dordrecht London New York 2011, ISBN 978-3-642-21025-9, doi:10.1007/978-3-642-21026-6.
Einzelnachweise
- Schmidt: Maß- und Wahrscheinlichkeit. 2011, S. 255.
- Georgii: Stochastik. 2009, S. 242.