Abelsches Lemma

Das abelsche Lemma i​st ein Hilfsresultat z​ur Untersuchung d​es Konvergenzbereiches v​on Potenzreihen. Es i​st nach Niels Henrik Abel benannt.

Aussage

Sei

eine Potenzreihe. Ist ein Punkt, für den die Folge ihrer Summanden (betragsmäßig) beschränkt ist, so konvergiert absolut und normal in der offenen Kreisscheibe .

Konsequenz

Wenn man berücksichtigt, dass die Reihe stets an solchen Punkten divergieren muss, an denen die Folge ihrer Summanden unbeschränkt ist (nach dem Cauchy-Kriterium für Reihen), dann folgt aus dem Lemma, dass jede Potenzreihe einen wohldefinierten Konvergenzradius hat und auf jedem Kompaktum innerhalb des Konvergenzkreises gleichmäßig konvergiert, außerhalb des Konvergenzkreises divergiert. Für Punkte auf dem Konvergenzkreis wird keine Aussage über die Konvergenz gemacht.

Quelle

  • Eberhard Freitag & Rolf Busam: Funktionentheorie 1, Springer-Verlag, Berlin, ISBN 3-540-67641-4, Seite 98.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.