Abelsche Identität
Die abelsche Identität ist ein Ausdruck für die Wronski-Determinante zweier linear unabhängiger homogener Lösungen einer linearen gewöhnlichen Differentialgleichung zweiter Ordnung. Die Beziehung wurde 1827 von dem norwegischen Mathematiker Niels Henrik Abel (1802–1829) hergeleitet.
Aussage
Gegeben sei die lineare gewöhnliche Differentialgleichung zweiter Ordnung
- .
Für die Wronski-Determinante von zwei Lösungen der Differentialgleichung gilt dann
- .
Beweis
Nach Definition ist , worin ein Fundamentalsystem für die Differentialgleichung
- mit
ist. Gemäß der liouvilleschen Formel gilt
- .
Anwendung
Die abelsche Identität erlaubt es, die Wronski-Determinante bei bekanntem Wert an der Stelle für alle anderen zu berechnen. Insbesondere ist die Wronski-Determinante konstant, wenn gilt. Aufgrund der Beziehung, die die Wronski-Determinante zwischen zwei linear unabhängigen Lösungen herstellt, erlaubt sie unter Umständen, die eine aus der anderen zu berechnen.
Literatur
- W. Boyce, R. Di Prima: Elementary differential equations and boundary value problems. Wiley, New York 1969.
- Gerald Teschl: Ordinary Differential Equations and Dynamical Systems (= Graduate Studies in Mathematics. Band 140). American Mathematical Society, Providence 2012, ISBN 978-0-8218-8328-0 (mat.univie.ac.at).
Weblinks
- Eric W. Weisstein: Abel’s Differential Equation Identity. In: MathWorld (englisch).