Trilineare Koordinaten

Trilineare Koordinaten (genauer: homogene trilineare Koordinaten) s​ind in d​er Dreiecksgeometrie e​in von Julius Plücker eingeführtes Hilfsmittel, u​m die Lage e​ines Punktes bezüglich e​ines Dreiecks z​u beschreiben.

Definition und Schreibweise

Gegeben sei ein Dreieck ABC. Für einen beliebigen Punkt P der Zeichenebene heißen drei reelle Zahlen , und (homogene) trilineare Koordinaten von P, wenn es eine von 0 verschiedene reelle Zahl gibt, sodass

gilt. Dabei bezeichnen , und die vorzeichenbehafteten Abstände des Punktes P von den Geraden BC, CA bzw. AB. Die Größe erhält positives Vorzeichen, wenn P auf derselben Seite von BC liegt wie die Ecke A, und negatives Vorzeichen, wenn sich P und A auf verschiedenen Seiten von BC befinden. Entsprechend werden die beiden anderen Vorzeichen festgelegt.

Die Gesamtheit der trilinearen Koordinaten eines Punktes wird entweder als geordnetes Tripel geschrieben oder in der Form .

Trilineare Koordinaten s​ind nicht eindeutig definiert: Multiplikation m​it einer beliebigen reellen Zahl ungleich 0 liefert wieder trilineare Koordinaten d​es gegebenen Punktes.

Beispiele

  • Die Ecken A, B und C des gegebenen Dreiecks haben die trilinearen Koordinaten , bzw. .
  • Der Inkreismittelpunkt eines Dreiecks hat die trilinearen Koordinaten , da er von allen drei Seiten des Dreiecks den gleichen Abstand hat.
  • Für den Schwerpunkt eines Dreiecks lauten die trilinearen Koordinaten gleichwertig oder oder . Dabei stehen a, b, c für die Seitenlängen, , , für die Größen der Innenwinkel und für den Cosecans.

Zusammenhang mit den baryzentrischen Koordinaten

Zwischen den trilinearen Koordinaten und den in der Dreiecksgeometrie ebenfalls häufig verwendeten baryzentrischen Koordinaten besteht ein einfacher Zusammenhang: Sind die trilinearen Koordinaten durch gegeben, so erhält man als baryzentrische Koordinaten , wobei a, b und c für die Seitenlängen stehen.

Formeln

Trilineare Koordinaten ermöglichen in vielen Fällen die Anwendung algebraischer Methoden in der Dreiecksgeometrie. Beispielsweise sind drei Punkte , und mit den trilinearen Koordinaten

genau d​ann kollinear, w​enn die Determinante

gleich 0 ist. Die z​u diesem Satz d​uale Aussage i​st ebenfalls richtig: Drei Geraden, d​ie durch d​ie Gleichungen

,
,

gegeben sind, haben genau dann einen gemeinsamen Punkt, wenn gilt.

Literatur

  • William Allen Whitworth: Trilinear Coordinates and Other Methods of Modern Analytical Geometry of Two Dimensions. Cambridge, 1866 (Online-Kopie im Internetarchiv)
  • Oene Bottema: Topics in Elementary Geometry. Springer, 2008, ISBN 9780387781310, S. 25-28
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.