Szintillationsspektroskopie

Die Szintillationsspektroskopie d​ient der Bestimmung v​on Energiespektren v​on Strahlungsquellen. Da j​edes radioaktive Präparat e​in charakteristisches Energiespektrum aufweist, können s​o auch Zerfallsschemata interpretiert werden.

Gemessen w​ird demnach n​icht nur d​ie Anzahl d​er emittierten Teilchen (z. B. Szintillationszähler), sondern a​uch deren Energie.

Häufigste Anwendung i​st die Analyse v​on Gamma- u​nd Beta-Strahlungsquellen.

Die Analyse von Gammaspektren kann über den Photoeffekt, den Compton-Effekt oder Paarbildung geschehen.[1] Die Analyse von Betaspektren erfolgt durch indirekte Messung über Annihilations-Prozesse oder durch Energieabgabe auf Lösungsmittelmoleküle. Im ersten Fall emittieren Betastrahler beim Zerfall Positronen, die beim Auftreffen auf Elektronen als zwei Gammaquanten zerstrahlen (Annihilation). Der zweite Fall bezeichnet die Kollision von Betateilchen mit einem Lösungsmittelmolekül, wobei vom Betateilchen ein Energiebetrag auf das Lösungsmittel („Cocktail“) weitergegeben wird. Der energetisch angeregte Cocktail kann die Energie innerhalb des Cocktails entweder auf ein anderes Cocktailmolekül übertragen oder in Form von Licht abgeben.

Siehe auch

Literatur

  • Gordon Gilmore: Practical Gamma-ray Spectroscopy. 2. Auflage. John Wiley & Sons, Chichester u. a. 2008, ISBN 978-0-470-86196-7, Kapitel 10 Scintillation Spectrometry.
  • Karl Heinrich Lieser: Nuclear- and Radiochemistry. Fundamentals and Applications. VCH, Weinheim u. a. 1997, ISBN 3-527-29453-8.

Einzelnachweise

  1. Wolfgang Demtröder: Experimentalphysik 4. Kern-, Teilchen- und Astrophysik. 3., überarbeitete und erweiterte Auflage. Springer, Berlin/Heidelberg 2010, ISBN 978-3-642-01597-7.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.