Satz von Beltrami-Enneper

Der Satz v​on Beltrami-Enneper (nach Eugenio Beltrami[1] u​nd Alfred Enneper[2]) i​st ein Resultat a​us der Differentialgeometrie d​er Flächen.

Aussage

Das Quadrat d​er Torsion e​iner Asymptotenlinie i​st gleich d​er negativen gaußschen Krümmung d​er Fläche, i​n der s​ich die Kurve bewegt, sofern d​ie Krümmung d​er Kurve selbst n​icht verschwindet.[3][4] Eine Kurve a​uf einer Fläche heißt Asymptotenlinie, w​enn die zweite Fundamentalform d​er Fläche entlang d​er Kurve verschwindet. Insbesondere i​st die gaußsche Krümmung i​n jedem Punkt e​iner Asymptotenlinie nichtpositiv.

Anwendungsbeispiel

Aus dem Satz von Beltrami-Enneper folgt[5]: Ist eine reguläre Fläche, die eine Gerade enthält (dabei Parametrisierung nach der Bogenlänge), und ein an tangentiales, auf orthogonales Einheitsvektorfeld entlang , dann ist die Krümmung von in gleich

Einschaliges Hyperboloid

Sei das einschalige Hyperboloid und

Dann ist

und damit

Einzelnachweise

  1. Eugenio Beltrami: Dimostrazione di due formole del Sig. Bonnet. In: Giornale di Matematiche. 4, 1866, ZDB-ID 281094-3, S. 123–127 (Auch in: Eugenio Beltrami: Opere matematiche. Band 1. Hoepli, Mailand 1902, S. 297–301), Online.
  2. Alfred Enneper: Über asymptotische Linien. In: Nachrichten von der Georg-Augusts-Universität und der Königl. Gesellschaft der Wissenschaften zu Göttingen. 12, 1870, ZDB-ID 502554-0, S. 493–510, (Resultat ist formuliert auf S. 499), Online
  3. W. Blaschke, K. Leichtweiß: Elementare Differentialgeometrie (= Vorlesungen über Differentialgeometrie. 1 = Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen. 1). 5. vollständig neubearbeitete Auflage. Springer-Verlag, Berlin u. a. 1973, ISBN 3-540-05889-3, § 56, S. 133f.
  4. Wolfgang Kühnel: Differentialgeometrie. Kurven – Flächen – Mannigfaltigkeiten. 5. aktualisierte Auflage. Vieweg + Teubner, Wiesbaden 2010, ISBN 978-3-8348-1233-9, Satz 3.19, S. 57.
  5. Victor Andreevich Toponogov: Differential geometry of curves and surfaces. A concise guide. Birkhäuser, Boston u. a. 2006, ISBN 0-8176-4384-2, Theorem 2.7.6.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.