Saccheri-Viereck

Ein Saccheri-Viereck i​st ein Viereck i​n der absoluten Geometrie m​it den Eigenschaften, d​ass zwei benachbarte Innenwinkel rechte Winkel s​ind und z​wei einander gegenüberliegende Seiten, a​n denen d​iese Winkel anliegen, gleich l​ang sind. Solche Vierecke wurden v​on dem italienischen Mathematiker Giovanni Girolamo Saccheri i​m ersten Drittel d​es 18. Jahrhunderts definiert u​nd untersucht, n​ach dem s​ie heute a​uch benannt sind. Sein ursprüngliches Ziel w​ar es dabei, Euklids 5. Postulat, d​as Parallelenaxiom, m​it einem Widerspruchsbeweis a​us den übrigen Axiomen herzuleiten.

Drei verschiedenartige Saccheri-Vierecke: Oben sind die beiden Innenwinkel, über die in der Definition nichts gesagt wird, rechte (euklidische Geometrie), in der Mitte stumpfe (elliptische Geometrie) und unten spitze Winkel (hyperbolische Geometrie).

Zum ersten Mal w​urde ein Viereck dieser Art v​on dem persischen Mathematiker Omar Chayyam i​m späten 11. Jahrhundert untersucht, d​aher wird d​as Viereck a​uch (korrekter) a​ls Chayyam-Saccheri-Viereck bezeichnet. Ob Saccheri v​on Khayyams Schriften wusste, i​st unbekannt.[1]

Geschichte und Eigenschaften

  • In der ebenen euklidischen Geometrie ist natürlich jedes Saccheri-Viereck ein Rechteck.
  • In der ebenen absoluten Geometrie gilt der folgende Satz:[2]
Sind die Eckpunkte eines Vierecks aufeinanderfolgend mit A, B, C und D bezeichnet und sind die Innenwinkel bei A und B rechte, dann ist die Seite DA länger, gleich lang oder kürzer als die Seite CB, je nachdem, ob der Innenwinkel bei D kleiner als, gleich oder größer als der Winkel bei C ist.
  • Aus diesem Satz folgt, dass die beiden Innenwinkel eines Saccheri-Vierecks, über die in dessen Definition nichts ausgesagt wird, in der absoluten Geometrie stets einander gleich sein müssen.
  • Saccheri zeigte im Wesentlichen korrekt, dass in dem von ihm verwendeten Axiomensystem der absoluten Geometrie, das im Großen und Ganzen gleichwertig zu den Axiomengruppen I-III und V in dem von David Hilbert viel später definierten Axiomensystem der euklidischen Geometrie war, die fraglichen Winkel nicht stumpf sein können. Hilbert hat sein Axiomensystem so formuliert, dass seine Axiome ohne das Parallelenaxiom sowohl euklidische (es existiert durch einen Punkt eine eindeutige Parallele) als auch hyperbolische (es existieren durch einen Punkt mehrere Parallelen) Modelle der Geometrie zulassen. Um auch die elliptische Geometrie, in der durch einen Punkt außerhalb einer Geraden keine Parallele existiert, axiomatisch erfassen zu können, werden in der absoluten Geometrie Hilberts Axiome der Anordnung (Gruppe II) und der Kongruenz (Gruppe III) oft durch schwächere Axiome der Bewegung ersetzt.[3][4] Eine neuere Axiomatik der absoluten Geometrie, die ganz auf dem Bewegungsbegriff aufbaut, ist die metrische absolute Geometrie.
  • Hingegen war Saccheris Beweis, dass diese Winkel nicht spitz sein können, fehlerhaft.[3]

Das Parallelenaxiom durch Saccheri-Vierecke ausgedrückt

Jede d​er folgenden Aussagen i​st auf d​er Grundlage d​er Axiome d​er absoluten Geometrie (nach Hilbert) gleichwertig z​um Parallelenaxiom (Axiom IV b​ei Hilbert):[3]

  • Es existiert ein Rechteck.
  • In einem und damit in jedem Saccheri-Viereck sind alle Innenwinkel rechte.

Literatur

  • Girolamo Saccheri: Euclides ab omni naevo vindicatus. sive conatus geometricus quo stabiliuntur prima ipsa universae geometriae principia / Hieronymus Saccherius. 1733, doi:10.3931/e-rara-10433.
  • H.S.M. Coxeter: Non-Euclidean Geometry. 6. Auflage. Mathematical Association of America, Washington DC 1998, ISBN 0-88385-522-4.
  • Richard L. Faber: Foundations of Euclidean and Non-Euclidean Geometry. Marcel Dekker, New York 1983, ISBN 0-8247-1748-1.
  • M. J. Greenberg: Euclidean and Non-Euclidean Geometries: Development and History. 4. Auflage. W. H. Freeman, 2008.
  • George E. Martin: The Foundations of Geometry and the Non-Euclidean Plane. Springer-Verlag, 1975.
  • Richard Trudeau: Die geometrische Revolution. Birkhäuser Verlag, Basel/Boston/Berlin 1998, ISBN 3-7643-5914-5.
  • Benno Klotzek: Euklidische und nichteuklidische Elementargeometrien. 1. Auflage. Harri Deutsch, Frankfurt am Main 2001, ISBN 3-8171-1583-0.

Einzelnachweise

  1. Boris Abramovich Rozenfeld: A History of Non-Euclidean Geometry. 1988 (books.google.com).
  2. Trudeau (1998), Kapitel 4: Das Problem mit dem Postulat 5, Satz A
  3. Trudeau (1998), Kapitel 4
  4. Klotzek (2001) 1.1.3, Bewegungen und Spiegelungen
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.