Riemannsche Holonomie

Der mathematische Begriff d​er Riemannschen Holonomiegruppe o​der Riemannschen Holonomie bezeichnet i​n der Differentialgeometrie d​ie Gruppe linearer Transformationen, d​ie durch d​en Paralleltransport v​on Vektoren entlang geschlossener Kurven induziert wird.

Paralleltransport entlang einer geschlossenen Kurve auf der Sphäre

Definition

Sei eine Riemannsche Mannigfaltigkeit. Der Levi-Civita-Zusammenhang definiert den Paralleltransport auf . Für jede geschlossene Kurve

mit definiert der Paralleltransport eine lineare Abbildung

.

Als (Riemannsche) Holonomiegruppe von bezeichnet man die Gruppe aller invertierbaren linearen Abbildungen

,

für die es eine geschlossene Kurve mit gibt. Wegen

und

ist tatsächlich eine Gruppe.

Zerlegbarkeit von Holonomiedarstellungen

Zerlegungssatz v​on de Rham: Die Holonomiedarstellung e​iner einfach zusammenhängenden Riemannschen Mannigfaltigkeit i​st genau d​ann reduzibel, w​enn die Metrik l​okal ein Produkt ist. Falls d​ie Mannigfaltigkeit geodätisch vollständig ist, m​uss die Metrik s​ogar global e​ine Produktmetrik sein.

Klassifikation irreduzibler Holonomiedarstellungen

Berger-Liste: Die Holonomiegruppe einer einfach zusammenhängenden, irreduziblen, nicht-symmetrischen Riemannschen -Mannigfaltigkeit ist eine der folgenden:

  • mit (Kählermannigfaltigkeiten)
  • mit (Calabi-Yau-Mannigfaltigkeiten)
  • mit (Hyperkählermannigfaltigkeiten)
  • mit
  • mit
  • mit

Bergers Liste der möglichen Holonomiegruppen enthielt ursprünglich noch mit , diese Möglichkeit konnte 1968 von Alexeevsky ausgeschlossen werden.

Die Holonomiegruppen symmetrischer Räume waren bereits von Cartan klassifiziert worden. Für einen einfach zusammenhängenden, irreduziblen symmetrischen Raum ist die Holonomiegruppe isomorph zu .

Spezielle Holonomie: Als Mannigfaltigkeiten spezieller Holonomie bezeichnet man Riemannsche Mannigfaltigkeiten, deren Holonomiegruppe eine echte Untergruppe von ist, also die Fälle 2-7 in Bergers Liste sowie Produkte, in denen mindestens einer der Faktoren in einen der Fälle 2-7 fällt.

Literatur

  • G. de Rham: Sur la réductibilité d’un espace de Riemann, Comm. Math. Helv. 26 (1952), 328–344.
  • M. Berger: Sur les groupes d'holonomie homogène des variétés à connexion affine et des variétés riemanniennes, Bull. Soc. Math. France 83 (1955), 279–330.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.