Quasinormierbarer Raum

Quasinormierbare Räume bilden e​ine im mathematischen Teilgebiet d​er Funktionalanalysis betrachtete Klasse lokalkonvexer Räume. Diese a​uf A. Grothendieck zurückgehende Begriffsbildung erlaubt e​ine Charakterisierung v​on Schwartzräumen. Man findet i​n der Literatur a​uch die Bezeichnung quasinormabel.

Definition

Ein lokalkonvexer Raum heißt quasinormierbar, falls es zu jeder Nullumgebung eine weitere Nullumgebung gibt, so dass man zu jedem eine beschränkte Menge mit finden kann.

Würde diese Bedingung sogar für gelten, so wäre eine beschränkte Nullumgebung und damit der Raum normierbar. Diese Betrachtung rechtfertigt den Namen quasinormierbar.

Beispiele

  • Normierte Räume sind quasinormierbar, da man als in obiger Definition eine beschränkte Nullumgebung wählen kann, zum Beispiel die offene Einheitskugel. Dann gilt für jedes , sogar für .
  • (DF)-Räume sind quasinormierbar.
  • Schwartz-Räume sind quasinormierbar.

Eine der Charakterisierungen der Schwartz-Räume besteht gerade darin, dass man in obiger Definition die beschränkte Menge sogar endlich wählen kann. Man kann sich nun fragen, welche Bedingung umgekehrt ein quasinormierbarer Raum erfüllen muss, um ein Schwartz-Raum zu sein. Es gilt folgender Satz:

  • Ein lokalkonvexer Raum ist genau dann ein Schwartz-Raum, wenn er quasinormierbar ist und jede beschränkte Menge präkompakt ist.

Eigenschaften

Quellen

  • Reinhold Meise, Dietmar Vogt: Einführung in die Funktionalanalysis (= Vieweg-Studium 62 Aufbaukurs Mathematik). Vieweg, Braunschweig u. a. 1992, ISBN 3-528-07262-8.
  • M. P. Katz: Every DF-space is quasinormable, Functional Analysis and Its Applications, Band 7 (1973), Seiten 157–158
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.