Orthogonalsystem

In d​er Linearen Algebra u​nd der Funktionalanalysis, Teilgebieten d​er Mathematik, i​st ein Orthogonalsystem e​ine Menge v​on Vektoren e​ines Vektorraums m​it Skalarprodukt (Prähilbertraum), d​ie paarweise aufeinander senkrecht stehen. Sind d​ie Vektoren zusätzlich n​och normiert (d. h., s​ie haben d​ie Norm 1), s​o spricht m​an von e​inem Orthonormalsystem.

Definition

Eine Teilmenge eines Prähilbertraums heißt Orthogonalsystem, wenn gilt:

  1. Je zwei verschiedene Vektoren aus sind zueinander orthogonal:
  2. Der Nullvektor ist nicht in der Menge enthalten.

Hier bezeichnet das Skalarprodukt des Raums , im euklidischen Raum also das Standardskalarprodukt.

Gilt zusätzlich

Jeder Vektor aus ist normiert, d. h. ,

so nennt man ein Orthonormalsystem.

Eigenschaften

  • Orthogonalsysteme sind linear unabhängig.
  • In separablen Hilberträumen (insbesondere in allen endlichdimensionalen Hilberträumen) lässt sich mit dem Gram-Schmidtschen Orthogonalisierungsverfahren aus jedem linear unabhängigen System ein Orthogonalsystem (bzw. Orthonormalsystem) bzw. aus jeder (Schauder-)Basis eine orthogonale (bzw. orthonormale) Basis konstruieren.
  • Für ein Orthonormalsystem gilt die Besselsche Ungleichung
  • Für jeden Vektor ist die Menge der , für die gilt, höchstens abzählbar.

Beispiele

  • Im mit dem Standardskalarprodukt ist die Standardbasis ein Orthogonalsystem
  • In bilden die Funktionen ein Orthogonalsystem (Siehe auch trigonometrisches Polynom)
  • In mit dem Skalarprodukt bilden die Folgen ein Orthogonalsystem
  • In dem Prähilbertraum der Polynome mit Grad kleiner gleich 5, , versehen mit dem -Skalarprodukt , bilden die Funktionen
und
ein Orthogonalsystem.

Siehe auch

Literatur

  • Dirk Werner: Funktionalanalysis. 6. korrigierte Auflage. Springer, Berlin 2007, ISBN 978-3-540-72533-6. Kapitel V.3 (Für den unendlichdimensionalen Fall, dort finden sich auch Beweise für die Beispiele)
  • Gerd Fischer: Lineare Algebra: Eine Einführung für Studienanfänger. 13. Auflage. Vieweg, 2002, ISBN 3-528-97217-3. (Für den endlichdimensionalen Fall, dort unter „Erzeugendensystem“)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.