Objekt planetarer Masse

Objekt planetarer Masse (englisch planetary-mass object, kurz PMO) ist ein Sammelbegriff für astronomische Objekte mit einer Masse

Infrarotaufnahme des freifliegenden Planeten CFBDSIR 2149-0403 (schwacher blauer Punkt in der Bildmitte)

Dies bedeutet, dass auch „umkreisende“ Planeten anderer Sterne oder Brauner Zwerge (siehe Exoplanet) sowie generell Zwergplaneten und größere Monde in diese Klasse gehören; hauptsächlich wird dieser Begriff jedoch für Objekte wie etwa Sub-Brown Dwarfs gebraucht, die nicht gravitativ an einen massereicheren Körper gebunden sind.[1]

Die Massen dieser Objekte sind häufig wesentlich größer als die Massen der traditionellen Planeten des Sonnensystems, was zum einen daran liegt, dass Sub-Brown Dwarfs unterhalb einer Jupitermasse nicht mehr entstehen können[2], zum anderen an der Schwierigkeit, leichtere Objekte nachzuweisen.

Definitionsproblem und weitere Bezeichnungen

Die Entdeckung von Objekten, die sich keinem Sternsystem zuordnen lassen, stellt die eindeutige Definition des Begriffs „Planet“ vor zusätzliche Probleme.[3] Es hat sich in der Forschung bisher keine allgemein anerkannte Definition und keine einheitliche Bezeichnung für diese Objekte durchgesetzt. In deutschsprachiger Berichterstattung finden sich unter anderem die Bezeichnungen freifliegender bzw. vagabundierender Planet (englisch rogue planet, free floating planet, FFP), Einzelgänger-Planet, Waisenplanet oder (der oder das) Planemo (von engl. planetary mass object).[4]

Sichtbarkeit und vermutete Häufigkeit

Freifliegende Planeten sind vergleichsweise schwer zu finden, da sie im sichtbaren Licht nicht leuchten, nicht nennenswert das Licht eines Sterns reflektieren und auch nicht durch ihren Einfluss auf einen Stern zu entdecken sind. Mit Infrarotteleskopen konnten jedoch aufgrund ihrer eigenen Wärmeemissionen einige Kandidaten für solche Objekte in der Galaxis entdeckt werden, sodass man heute davon ausgeht, dass in der Milchstraße beinahe doppelt so viele freifliegende Planeten wie Sterne existieren,[5] also bei geschätzt 100–300 Milliarden Sternen um die 400 Milliarden freifliegende Planeten.

Eine ähnliche Schätzung gelang für eine 3,8 Mrd. Lichtjahre entfernte Galaxie, die als Gravitationslinse zwischen der Erde und dem Quasar RX J1131-1231 sehr genau untersucht wurde.[6]

Beispiele

Größenvergleich: Sonne, Cha 110913-773444 und Jupiter.

Das Objekt Cha 110913-773444 ist von einer Staubscheibe umgeben und wurde 2005 mit dem Spitzer-Weltraumteleskop entdeckt. Es besitzt rund acht Jupitermassen und löste durch seine Entdeckung und unklare Einordnung als Stern oder Planet die Debatte aus, aus welcher die Bezeichnung „Planemo“ hervorging.

Das Objekt PSO J318.5-22, dessen Entdeckung am 1. Oktober 2013 veröffentlicht wurde, besitzt nach Kenntnisstand vom Mai 2014 ungefähr sechs Jupitermassen und ist damit zu massearm, um ein Stern oder ein Brauner Zwerg zu sein.[7]

Das Objekt OTS 44 wurde 2004 mit 15 Jupitermassen als der kleinste zu diesem Zeitpunkt bekannte Braune Zwerg mit einer protoplanetaren Staubscheibe beschrieben.[8] Nach Kenntnisstand vom November 2014 besitzt er um 11,5 Jupitermassen;[9] allerdings ist die Ableitung aus den Messdaten erheblich unsicher (5–17 Jupitermassen),[9] sodass er wahrscheinlich, aber nicht nachgewiesenermaßen ein Objekt planetarer Masse ist.

Das Objekt SIMP J013656.5+093347 wurde 2006 entdeckt und der Spektralklasse T2.5 zugeordnet. Erst 2017 wurde erkannt, dass es sich bei dem Objekt nicht um einen braunen Zwerg, sondern um ein PMO handelt. Es ist der erdnächste bisher entdeckte Himmelskörper dieser Art.

Weitere Beispiele für Objekte planetarer Masse sind S Ori 68 und S Ori 70 im Sternbild Orion.

Das im Juni 2016 beobachtete Mikrogravitationslinsen-Ereignis OGLE-2016-BLG-1928 wird in einer im Oktober 2020 erschienenen Veröffentlichung als die Beobachtung eines Objektes planetarer Masse mit einer Größe zwischen Erd- und Marsgröße gedeutet, das wahrscheinlich freifliegend ist, aber auch ein Planet sein könnte, der einen unbeobachteten Zentralstern in einer Entfernung von mindestens 8 AE umrundet.[10][11]

Liste von Kandidaten (Auswahl)

Die nachfolgende Liste enthält einige Kandidaten für Objekte planetarer Masse, die nicht gravitativ an einen massereicheren Körper gebunden sind.

Objekt Rektaszension Deklination Masse
in MJ
Radius
in RJ
Entfernung
in Lj
Jahr der
Entdeckung
Referenzen
Cha 110913-773444 11h 9m 13,63s 1226555.4−77° 34′ 44.6″ 8 1,8 500 2005 EPE
S Ori 68 05h 38m 39,1s 1977195−2° 28′ 05″ 5  ? 1400 2000 EPE
S Ori 70 5381005h 38m 10s 1976374−2° 36′ 26″ 3 1,6 1400 2002 EPE, Luhman
CFBDSIR 2149-0403 21h 49m 47,2s 1959691−4° 03′ 09″ 4 bis 7?  ? 130±13 2012 [12]
PSO J318.5-22 21140821h 14m 8s 2225136+22° 51′ 36″ ca. 6 1,53 80±5 2013 [7]
SIMP J013656.5+093347 01h 36m 56,6s 2093347+9° 33′ 47″ ca. 12,7 1,2 19,92 ± 0,09 2006 EPE

Siehe auch

Literatur

  • Franziska Konitzer: Milliarden frei fliegender Planeten. Sterne und Weltraum, Juli 2020, S. 22–25

Einzelnachweise

  1. S. Soter: What is a Planet? In: The Astronomical Journal. Band 132, S. 2513, IOP Publishing, 2006, arxiv:astro-ph/0608359 (englisch)
  2. Alan P. Boss, Gibor Basri, Shiv S. Kumar, James Liebert, Eduardo L. Martín, Bo Reipurth, Hans Zinnecker: Nomenclature: Brown Dwarfs, Gas Giant Planets, and ? Band 221, 1. Juni 2003, S. 529.
  3. siehe z. B. S. 21 von: Martin Ratcliffe: State of the Universe 2008: New Images, Discoveries, and Events. Praxis Publishing Ltd., New York 2008, ISBN 978-0-387-73998-4.
  4. Stefan Schmitt: Wortschöpfung – Planemo. Die Zeit, 12. Dezember 2014, abgerufen am 18. Dezember 2014 (gibt als Genus „der Planemo“ an, wohl analog zu „der Planet“ – ohne dies explizit zu begründen. Andere Fundstellen verwenden „das Planemo“ – wohl analog zu „das Objekt“ (planemo = planetary mass object Objekt planetarer Masse)).
  5. T. Sumi, K. Kamiya u. a.: Unbound or distant planetary mass population detected by gravitational microlensing. In: Nature. 473, 2011, S. 349, doi:10.1038/nature10092.
  6. E. Zachos: More Than a Trillion Planets Could Exist Beyond Our Galaxy. National Geographic, 5. Februar 2018, abgerufen am 13. April 2018.
  7. Michael C. Liu, Eugene A. Magnier, Niall R. Deacon, Katelyn N. Allers, Trent J. Dupuy, Michael C. Kotson, Kimberly M. Aller, W. S. Burgett, K. C. Chambers, P. W. Draper, K. W. Hodapp, R. Jedicke, R.-P. Kudritzki, N. Metcalfe, J. S. Morgan, N. Kaiser, P. A. Price, J. L. Tonry, R. J. Wainscoat: The Extremely Red, Young L Dwarf PSO J318-22: A Free-Floating Planetary-Mass Analog to Directly Imaged Young Gas-Giant Planets. In: Astrophysical Journal Letters. In Press, 1. Oktober 2013. arxiv:1310.0457.
  8. K. L. Luhmann, D. E. Peterson, S. T. Megeath: Spectroscopic Confirmation of the Least Massive Known Brown Dwarf in Chamaeleon. In: The Astrophysical Journal. 617, Nr. 1, 2004. doi:10.1086/425228.
  9. M. Bonnefoy, G. Chauvin, A.-M. Lagrange, P. Rojo, F. Allard, C. Pinte, C. Dumas, D. Homeier: A library of near-infrared integral field spectra of young M-L dwarfs. In: Astronomy & Astrophysics. 562, Nr. 127, 2014. doi:10.1051/0004-6361/201118270.
  10. Przemek Mróz et al.: A terrestrial-mass rogue planet candidate detected in the shortest-timescale microlensing event. 20. Oktober 2020, abgerufen am 21. Oktober 2020. arxiv:2009.12377v2 [astro-ph.EP]
  11. Jan Dönges: Frei fliegender Felsplanet: Erdgroßer einsamer Wanderer entdeckt. spektrum.de, 19. Oktober 2020, abgerufen am 21. Oktober 2020.
  12. P. Delorme, et al.: CFBDSIR2149-0403: a 4-7 Jupiter-mass free-floating planet in the young moving group AB Doradus ?. In: Astronomy & Astrophysics. 2012. arxiv:1210.0305.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.