Isophote
Eine Isophote ist in der Geometrie eine Kurve auf einer beleuchteten Fläche, die Punkte gleicher Helligkeit verbindet. Dabei wird vorausgesetzt, dass die Fläche mit parallelem Licht beleuchtet wird und die Helligkeit in einem Flächenpunkt mit dem folgenden Skalarprodukt gemessen wird:
Dabei ist der Einheitsnormalenvektor im Flächenpunkt und der Einheitslichtvektor. Ist , d. h. die Lichtrichtung senkrecht zur Normale, so ist ein Punkt des Flächenumrisses bei Parallelprojektion in Richtung . Helligkeit 1 bedeutet, das Licht fällt in dem Punkt P senkrecht auf die Fläche. Eine Ebene besitzt keine Isophoten, da jeder Punkt der Ebene die gleiche Helligkeit besitzt.
In der Astronomie versteht man unter einer Isophote eine Kurve auf einer Photographie, die Punkte gleicher Helligkeit verbindet.[1]
Anwendung mit Beispiel
Isophoten werden im CAD-Bereich als Testkurven verwendet, um die Güte von Flächenübergängen optisch zu beurteilen. Denn bei einer genügend differenzierbaren Fläche (implizit oder parametrisiert) hängt der Normalenvektor der Fläche von den ersten Ableitungen ab. Die Differenzierbarkeit der Isophoten und damit ihre geometrische Stetigkeit ist also gegenüber der Fläche um 1 reduziert. Sind in einem Punkt der Fläche nur die Tangentialebenen stetig (d. h. -stetig), so besitzt die Isophote in diesem Punkt einen Knick (d. h. ist nur -stetig).
In dem folgenden Beispiel (s. Bild) werden zwei sich schneidende Tensorprodukt-Bezierflächen mit Hilfe einer Übergangsfläche ausgerundet. Links hat die Übergangsfläche nur -kontakt mit den Bezierflächen, rechts -Kontakt. Dieser Unterschied ist ohne die Isophoten nicht zu erkennen. Erst die Isophoten zeigen den Unterschied: links haben die Isophoten Knicke, rechts sind sie glatt.
Bestimmung von Punkten einer Isophote
Für eine implizite Fläche
Ist die Fläche implizit durch eine Gleichung gegeben, so lautet die Isophoten-Bedingung
Um Punkte der zu einem vorgegebenen gehörigen Isophote zu bestimmen, muss man also Lösungen des nicht linearen Gleichungssystems
bestimmen. Dieses System kann man als Schnitt zweier impliziter Flächen ansehen und mit dem Verfolgungsalgorithmus von Bajaj et al. (s. Literatur) genügend viele Punkte berechnen.
Für parametrisierte Flächen
Ist die Fläche parametrisiert durch gegeben, so lautet die Isophotenbedingung
Diese Gleichung kann man in die Gleichung
umformen. Diese Gleichung beschreibt in der s-t-Ebene eine implizite Kurve, für die man mit einem Verfolgungsalgorithmus (s. implizite Kurve) genügend viele Punkte bestimmen und anschließend mit Flächenpunkte berechnen kann.
Siehe auch
Literatur
- J. Hoschek, D. Lasser: Grundlagen der geometrischen Datenverarbeitung, Teubner-Verlag, Stuttgart, 1989, ISBN 3-519-02962-6, S. 31.
- Z. Sun, S. Shan, H. Sang et al.: Biometric Recognition, Springer, 2014, ISBN 978-3-319-12483-4, S. 158.
- C.L. Bajaj, C.M. Hoffmann, R.E. Lynch, J.E.H. Hopcroft: Tracing Surface Intersections, (1988) Comp. Aided Geom. Design 5, S. 285–307.
- J. Binney, M. Merrifield: Galactic Astronomy, Princeton University Press, 1998, ISBN 0-691-00402-1, S. 178.