Hamilton-Jacobi-Formalismus

Ziel d​es Hamilton-Jacobi-Formalismus (benannt n​ach den Mathematikern William Rowan Hamilton u​nd Carl Gustav Jakob Jacobi) d​er Klassischen Mechanik i​st es, d​ie Hamiltonschen Bewegungsgleichungen mittels e​iner besonderen kanonischen Transformation

zu vereinfachen. Dadurch w​ird eine n​eue Hamilton-Funktion erzeugt, d​ie identisch Null ist:

Dies hat zur Folge, dass sowohl die transformierten generalisierten Ortskoordinaten , als auch ihre kanonisch konjugierten Impulskoordinaten Erhaltungsgrößen sind, dass also alle dynamischen Größen in der neuen Hamilton-Funktion zyklische Koordinaten sind:

Diese transformierten Bewegungsgleichungen sind trivial, das Problem verlagert sich stattdessen auf das Finden einer passenden Erzeugenden . Indem man ihre partielle Ableitung nach der Zeit zur untransformierten Hamilton-Funktion addiert, erhält man die transformierte Hamilton-Funktion:

Dabei wird speziell eine erzeugende Funktion gewählt, die von den alten Ortskoordinaten und den neuen (konstanten) Impulsen abhängt, so dass

Eingesetzt in ergibt sich die Hamilton-Jacobi-Differentialgleichung für :

Sie ist eine partielle Differentialgleichung in den Variablen und für die Hamiltonsche Wirkungsfunktion (die Verwendung des Begriffs „Wirkung“ wird weiter unten begründet).

Herleitung der Hamilton-Jacobi-Gleichung aus dem Wirkungsintegral

Zur konkreten Herleitung dieser Differentialgleichung betrachtet m​an das Wirkungsfunktional

mit der Lagrange-Funktion . Die totale Zeitableitung hiervon gibt die Lagrange-Funktion zurück, d.h.

.

Sieht man jedoch als Funktion der Koordinaten und an, so ergibt sich für das totale Zeit-Differential

.

Die partielle Koordinatenableitung ergibt zusammen m​it den Euler-Lagrange-Gleichungen

mit den kanonischen Impulsen . Durch Vergleich der totalen Zeitableitungen von erhält man somit

,

woraus n​ach der Definition d​er Hamilton-Funktion d​ie behauptete Gleichung sofort folgt.

Hamilton-Jacobi-Formalismus für nicht explizit zeitabhängige Hamilton-Funktion

Für konservative Systeme (d. h. nicht explizit zeitabhängig: ) wird zur ursprünglichen Hamilton-Funktion, die von den alten Impulsen und Orten abhängt, eine erzeugende Funktion konstruiert, die sie in eine neue Hamilton-Funktion transformiert, welche nur noch von den neuen (konstanten) Impulsen abhängt

Dabei s​ind die n​euen Impulse Konstanten d​er Bewegung:

die n​euen Orte ändern s​ich nur linear m​it der Zeit:

mit

Für muss gelten

Eingesetzt in die Hamilton-Funktion ergibt sich die Hamilton-Jacobi-Differentialgleichung für für konservative Systeme:

Zur Veranschaulichung von wird die totale Ableitung nach der Zeit berechnet

Benutzt man nun die lagrangeschen Bewegungsgleichungen (mit Lagrangefunktion , wobei die kinetische Energie ist, das Potential):

.

Die zeitliche Integration liefert

also ist mit dem Wirkungsintegral identisch.

Beispiel: Der eindimensionale harmonische Oszillator

Sei ein beliebiges Potential. Die Hamilton-Funktion lautet

die Hamilton-Jacobi-Gleichung

Beim eindimensionalen Oszillator ist die einzige Konstante der Bewegung. Da ebenfalls konstant sein muss, setzt man , was für alle konservativen Systeme möglich ist.

Durch Integrieren folgt

mit

Wegen d​er Hamiltonschen Bewegungsgleichung g​ilt außerdem

Um die Bewegung in und darstellen zu können, muss zu den alten Koordinaten zurücktransformiert werden

Für den Spezialfall des harmonischen Oszillators ergibt sich mit

Somit (für den Fall )

und letztlich

Literatur

  • Herbert Goldstein; Charles P. Poole, Jr; John L. Safko: Klassische Mechanik. 3. Auflage. Wiley-VCH, Weinheim 2006, ISBN 3-527-40589-5.
  • Wolfgang Nolting: Grundkurs Theoretische Physik 2 Analytische Mechanik. 7. Auflage. Springer, Heidelberg 2006, ISBN 3-540-30660-9.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.