Haar-Raum

Ein Haar-Raum, o​der Haarscher Raum (benannt n​ach Alfréd Haar) w​ird in d​er Approximationstheorie folgendermaßen definiert:

Besitzen linear unabhängige, auf einem Intervall stetige Funktionen die Eigenschaft, dass jedes Element , in höchstens Nullstellen hat, dann heißt die Menge Haar-Raum.

Ein System solcher Funktionen , die einen Haar-Raum aufspannen, wird auch Haarsches System oder Tschebyschow-System genannt. Wird eine stetige Funktion durch Elemente eines Haar-Raumes approximiert, so existiert bezüglich der Maximumsnorm stets genau eine beste Approximation.

Interpolation in Haar-Räumen

Hat man paarweise verschiedene Punkte (Stützstellen) und Daten , so existiert genau ein mit . Dies ist äquivalent zur Regularität der Vandermonde-Matrix.

Beweis Die Abbildung ist linear. Weil jedes höchstens n-1 Nullstellen hat, ist der Kern der Abbildung nur die Nullfunktion, d. h. L ist injektiv. Wegen ist L surjektiv, also insgesamt bijektiv. Daraus folgt Existenz und Eindeutigkeit der Interpolationsfunktion g.

Beispiele

  • Der Vektorraum der Polynome höchstens n-ten Grades ist ein Haar-Raum. ist ein Haarsches System.
  • Das System ist jedoch kein Haarscher Raum.
  • Die trigonometrischen Polynome bilden ein Haar-Raum mit Haarschem System (Polynome in ).
  • sind jeweils Haarsche Systeme.

Historie

Erstmals formulierte u​nd bewies Haar d​ie Haar condition 1918 in: Die Minkowskische Geometrie u​nd die Annäherung a​n stetige Funktionen, Mathematische Annalen, Band 78, Seite 294–311. Andere Beweise formulierten Vlastimil Pták 1958 (A remark o​n approximation o​f continuous functions i​n Czechoslovak Math. Journal, Band 8, Seite 251–256) u​nd Singer 1960 (On b​est approximation o​f continuous functions i​n Mathematische Annalen, Band 140, Seite 165–168).[1]

Literatur

  • Günther Hämmerlin, Karl-Heinz Hoffmann: Numerische Mathematik. Springer, Berlin 1994, ISBN 3-540-58033-6

Einzelnachweise

  1. Elliot Ward Cheney: Introduction to Approximation Theory, McGraw-Hill Book Company, 1966, Library of Congress Catalog Card Number 65-25916, ISBN 007-010757-2, Seite 227 + 242 + 248 + 251
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.