Formelsammlung analytische Geometrie

Dies i​st eine Formelsammlung z​u dem mathematischen Teilgebiet analytische Geometrie.

Vorbemerkungen zur Schreibweise

Im Folgenden werden durchnummerierte kartesische Koordinaten (gleichwertig zu ), (gleichwertig zu ), (gleichwertig zu ) verwendet. Vektoren werden in Pfeilschreibweise notiert. Ortsvektoren werden mit demselben Großbuchstaben bezeichnet wie die entsprechenden Punkte. Das Skalarprodukt wird durch ausgedrückt, das Kreuzprodukt (Vektorprodukt) durch .

Analytische Geometrie der euklidischen Ebene

Bezeichnungen

Im Folgenden habe der Punkt die Koordinaten ; die Punkte in dieser Reihenfolge

Punkte

Punkte werden d​urch kartesische Koordinaten o​der durch Ortsvektoren beschrieben.

Koordinatendarstellung e​ines Punktes

oder

Ortsvektor des Punktes :

Verbindungsvektor zweier Punkte :

Mittelpunkt der Strecke (als Ortsvektor):

Teilungspunkt : Der Punkt, der die Strecke im Verhältnis teilt:

Schwerpunkt eines Dreiecks :

Geraden

Parametergleichung der Geraden (Punkt-Richtungs-Form) durch den Punkt mit dem Richtungsvektor :

Der Parameter kann alle reellen Zahlen als Wert annehmen und darf nicht der Nullvektor sein.

Parametergleichung der Geraden (Zwei-Punkte-Form) durch die Punkte :

Der Parameter kann alle reellen Zahlen als Wert annehmen und . und müssen verschieden sein.

Normalengleichung der Geraden durch den Punkt mit dem Normalenvektor in vektorieller Schreibweise:

bzw.

Koordinatengleichung, explizite Form der Geraden mit der Steigung durch den Punkt der -Achse:

Einschränkung: Die Gerade darf nicht parallel zur -Achse sein.

Koordinatengleichung, Achsenabschnittsform der Geraden durch die Punkte (auf der -Achse) und (auf der -Achse):

Einschränkung: Die gegebenen Punkte dürfen nicht mit dem Ursprung übereinstimmen, d. h. es muss und gelten.

Abstände

Abstand der Punkte :

Abstand des Punktes von der Geraden mit der Normalengleichung (siehe Hessesche Normalform):

Abstand zweier paralleler Geraden und mit den Normalengleichungen bzw. :

Projektionen

Orthogonalprojektion eines Punkts auf eine Gerade in Parameterform :

Orthogonalprojektion eines Punkts auf eine Gerade in Normalenform :

Parallelprojektion in Richtung eines Punkts auf eine Gerade in Normalenform :

Winkel

Schnittwinkel (kleinerer Winkel) zwischen zwei Geraden mit den Richtungsvektoren und (vergleiche Skalarprodukt):

Flächen

Fläche des Dreiecks (siehe Kreuzprodukt):

Fläche des nicht überschlagenen Polygons mit den Ecken :

Kreise

Gleichung d​es Kreises i​n kartesischen Koordinaten:

  • des Einheitskreises
  • allgemein: Mittelpunkt in , Radius

in Parameterform (allgemein):

mit

Gleichung des Kreises durch drei Punkte

Gleichung der Kreistangente im Punkt

  • Einheitskreis
  • Allgemein:

Schnittpunkt der Geraden mit dem Kreis :

Mittelpunkt des Kreises durch drei Punkte die nicht auf einer Geraden liegen:

Kegelschnitte

Kegelschnitt Ellipse Hyperbel Parabel
Eigenschaften
Definition: Menge aller Punkte, für die … die Summe der Abstände zu den Brennpunkten konstant gleich 2a ist. die Differenz der Abstände den beiden Brennpunkten konstant gleich 2a ist. der Abstand zu einem Brennpunkt und der Leitgeraden l konstant ist.
Lineare Exzentrizität --
Koordinaten
Kartesische Koordinaten
Achsenparallele Lage
Parameterform mit
Geraden
Tangente in
Normale durch
Schnittpunkt mit der Geraden











Flächeninhalt

Ebene Kurven mit ausgezeichneter Krümmung

Da die geometrische Form einer ebenen Kurve unter Translation und Drehung invariant bleibt, kann eine ausgezeichnete (symmetrische) Darstellung ihrer analytischen Beschreibung gewählt werden. Insbesondere ist somit jede ebene, zweimal stetig differenzierbare Kurve bereits durch Angabe ihrer Krümmung (in jedem Punkt) eindeutig beschrieben. In den folgenden Formeln sind beliebige, aber feste Konstanten und bezeichnet stets die Bogenlänge (bei natürlicher Parametrisierung).

Kurve Definitionsbereich analytische Funktionsgleichung Krümmung Charakterisierung ihrer Krümmung
Gerade


explizit kartesisch

explizit polar parametrisch
null
Kreis explizit polar konstant
gleichseitige Hyperbel implizit polar umgekehrt proportional zum vorzeichenbehafteten „Abstand“
Lemniskate implizit polar proportional zum vorzeichenbehafteten „Abstand“
Logarithmische Spirale explizit polar

umgekehrt proportional zum Abstand

umgekehrt proportional zur Bogenlänge
Klothoide kartesisch parametrisch proportional zu ihrer Bogenlänge
Katenoide

explizit kartesisch

umgekehrt proportional zum Quadrat
ihres x-Achsenabstandes

Kreisevolvente explizit polar parametrisch umgekehrt proportional zur Wurzel ihrer Bogenlänge

Hier bezeichnen und die Fresnelschen Integrale.

Analytische Geometrie des dreidimensionalen euklidischen Raumes

Bezeichnungen

Im Folgenden haben die Punkte in dieser Reihenfolge die Koordinaten .

Punkte

Punkte werden d​urch kartesische Koordinaten o​der durch Ortsvektoren beschrieben.

Koordinatendarstellung

Ortsvektor

Verbindungsvektor zweier Punkte :

Mittelpunkt der Strecke :

Teilungspunkt , der die Strecke im Verhältnis teilt:

Schwerpunkt eines Dreiecks mit den Ecken :

Geraden

Parametergleichung einer Geraden (Punkt-Richtungs-Form) durch den Punkt mit dem Richtungsvektor :

Der Parameter kann alle reellen Zahlen als Wert annehmen und darf nicht der Nullvektor sein.

Ebenen

Parametergleichung der Ebene (Punkt-Richtungs-Form) durch den Punkt mit den Richtungsvektoren und :

Die Parameter und können alle reellen Zahlen als Wert annehmen und die Vektoren müssen linear unabhängig sein (d. h. und ist kein skalares Vielfaches von )

Parametergleichung einer Ebene (Drei-Punkte-Form) durch die Punkte :

Die beiden Parameter und können alle reellen Zahlen als Werte annehmen und die gegebenen Punkte und dürfen nicht auf einer Geraden liegen.

Normalengleichung der Ebene durch den Punkt mit dem Normalenvektor in vektorieller Schreibweise:

bzw.

Koordinatengleichung

mit nicht alle gleich 0.

Überführen d​er Formen ineinander

  • Parameterform in Normalenform:
  • Normalenform und Koordinatengleichung:
    Die Normalenform ist dasselbe wie die Koordinatengleichung, nur ein wenig anders aufgeschrieben. Explizit: und .
  • Von der Parameterform zur Koordinatengleichung:
    definiert drei Gleichungen; man löse eine davon nach und eine andere nach auf und setze dies in die verbleibende Gleichung ein.
  • Von der Koordinatengleichung zur Parameterform:
    Entweder findet man durch Ausprobieren drei nicht-kollineare Punkte in der Ebene und setzt diese in die Drei-Punkte-Form der Parametergleichung ein. Alternativ funktioniert auch folgender algorithmischer Ansatz: Da nicht alle gleich 0 sind (sagen wir ), lässt sich die Koordinatengleichung nach einer Koordinate auflösen und diese Koordinate ist also eine Funktion der beiden anderen: . Man findet nun drei nicht-kollineare Punkte in der Ebene, indem man nacheinander , und einsetzt. D. h. explizit setzt man
    , und
    in die Drei-Punkte-Form der Parametergleichung ein.

Abstände

Abstand der Punkte

Abstand des Punkts von der Geraden in Parameterform :

Abstand des Punktes von der Ebene mit der Normalengleichung (siehe Hessesche Normalform):

Abstand des Punktes von der Ebene in Parameterform :

Abstand der parallelen Ebenen und mit den Normalengleichungen bzw. :

Projektionen

Orthogonalprojektion eines Punkts auf eine Gerade in Parameterform :

Orthogonalprojektion eines Punkts auf eine Ebene in Normalenform :

Parallelprojektion in Richtung eines Punkts auf eine Ebene in Normalenform :

Winkel

Schnittwinkel (kleinerer Winkel) zwischen zwei Geraden mit den Richtungsvektoren und :

Schnittwinkel zwischen einer Ebene mit dem Normalenvektor und einer Geraden mit dem Richtungsvektor :

Schnittwinkel zwischen zwei Ebenen mit den Normalenvektoren und :

Volumina

Volumen des Tetraeders (vergleiche Spatprodukt): ()

Kugeln

Kartesische Koordinaten

  • Einheitskugel:
  • Allgemein: (Mittelpunkt: )

Parameterform (im Ursprung)

mit und

Mittelpunkt der Kugel durch vier Punkte und , die nicht in einer Ebene liegen:

Flächen zweiter Ordnung

Ellipsoid mit den Halbachsen , Mittelpunkt im Ursprung, Halbachsen parallel zur bzw. -Achse:

Hyperboloid mit Halbachsen :

Paraboloid m​it Scheitel i​m Ursprung:

Plus liefert e​in elliptisches, m​inus ein hyperbolisches Paraboloid.

Kegel mit Halbachsen der Ellipse, Spitze im Ursprung:

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.