Christian Reiher
Christian Reiher (* 19. April 1984 in Starnberg) ist ein deutscher Mathematiker.
Reiher gewann 2000 bis 2003 viermal hintereinander eine Goldmedaille auf der Internationalen Mathematikolympiade.[1] Damit ist er aktuell der fünfterfolgreichste Teilnehmer. Er studierte an der Ludwig-Maximilians-Universität München und wurde 2010 an der Universität Rostock bei Hans-Dietrich Gronau promoviert (A proof of the theorem according to which every prime number possesses property B).[2] Er ist Dozent an der Universität Hamburg.
2003 bewies er die Vermutung von Arnfried Kemnitz[3][4]: Sei S die Menge von Gitterpunkten in der Ebene zu einer natürlichen Zahl , dann existiert eine Untermenge von mit Punkten, sodass deren Zentroid auch ein Gitterpunkt ist.
Die Vermutung von Kemnitz verallgemeinert einen Satz von Erdös, Ginzburg und Ziv (1961)[5] im eindimensionalen Fall (Jede Menge von ganzen Zahlen hat eine Untermenge mit n ganzen Zahlen deren Mittelwert eine ganze Zahl ist). Eine andere Formulierung der Vermutung von Kemnitz fragt nach , der kleinsten Zahl , sodass jede Menge von Gitterpunkten im k-dimensionalen euklidischen Raum eine Untermenge S der Kardinalität enthält, sodass die Summe der Elemente von S durch teilbar ist. Dann ist nach Erdös u. a. und nach der Vermutung von Kemnitz .
Reiher benutzte für seinen Beweis den Satz von Chevalley und Warning.
2017 erhielt er den European Prize in Combinatorics insbesondere für seine Lösung der Kemnitz-Vermutung und das Cliquen-Dichte-Problem von Lovász-Simonovits.[6] Die Cliquen-Dichte Vermutung von László Lovász und Miklós Simonovits wurde von Reiher 2016 bewiesen nach Teilergebnissen von Razborov () und Vladimir Nikoforov ().[7] Der Satz baut auf dem Satz von Turán der extremalen Graphentheorie auf, der eine Aussage über die Mindestanzahl von Kanten macht, die ein Graph mit gegebener Knotenzahl haben muss, damit die Existenz einer -Clique sichergestellt ist. Lovasz und Simonovits vermuteten in den 1970er Jahren, dass für ein ein Graph mit n Knoten und mindestens Kanten () asymptotisch mindestens -Cliquen enthält mit einer Konstanten . Weiter vermuteten sie, dass der bezüglich dieses Problems extremale Graph durch den vollständigen multipartiten Graphen mit dieser Kanten- und Knotenzahl gegeben ist, in dem alle Partitionsklassen gleich groß sind bis eventuell auf eine, die kleiner sein kann.
Einzelnachweise
- Webseite der IMO zu Reiher
- Christian Reiher im Mathematics Genealogy Project (englisch)
- A. Kemnitz, On a lattice point problem, Ars Combinatoria, Band 16b, 1983, S. 151–160
- Reiher, On Kemnitz' conjecture concerning lattice-points in the plane, The Ramanujan Journal, Band 13, 2007, S. 333–337
- Erdös, Ginzburg, Ziv, A theorem in the additive number theory, Bull. Research Council Israel, Band 10 F, 1961, S. 41–43
- European Prize in Combinatorics 2017
- Reiher, The Clique density theorem, Annals of Mathematics, Band 184, 2016, S. 683–707, Arxiv