Witt-Algebra

Die Witt-Algebra wird in der Mathematik untersucht, es handelt sich um eine spezielle Lie-Algebra. Sie findet Verwendung in der mathematischen Physik, wie in der Stringtheorie und konformen Feldtheorie. Namensgeber ist der deutsche Mathematiker Ernst Witt.

Definition

Sei mit als ganzzahligem Index eine Basis eines Vektorraumes. Die durch die Kommutatorrelation

definierte Lie-Algebra heißt Witt-Algebra. Man erhält solche Algebren a​ls Derivationen-Algebra über d​em Ring d​er Laurent-Polynome.

Realisierung durch Vektorfelder

In den meisten Anwendungen betrachtet man Derivationen über . Man kann die Witt-Algebra wie folgt durch komplexwertige Vektorfelder realisieren:

sl(2,K) als Unteralgebra

Aus obigen Kommutatorrelationen ergibt sich sofort, dass für die von erzeugte Unter-Lie-Algebra gleich ist. Diese drei-dimensionale Unter-Lie-Algebra ist isomorph zur sl(2,K).

Zentrale Erweiterung

Wenn m​an die Witt-Algebra d​urch den Kozykel

zentral erweitert, s​o erhält m​an die Virasoro-Algebra.

Quellen

Igor Frenkel, James Lepowsky, Arne Meurman: Vertex Operator Algebras a​nd the Monster, Academic Press, New York (1988) ISBN 0-12-267065-5

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.