Thomaesche Funktion

Die thomaesche Funktion, benannt n​ach dem deutschen Mathematiker Carl Johannes Thomae (1840–1921), i​st eine mathematische Funktion, d​ie auf d​en rationalen Zahlen unstetig u​nd auf d​en irrationalen stetig ist. Sie i​st verwandt m​it der Dirichlet-Funktion u​nd hat w​ie diese k​eine praktische Bedeutung, sondern d​ient als Beispiel für Stetigkeit u​nd weitere mathematische Themen.

Graph der thomaeschen Funktion auf (0,1)

Weitere Bezeichnungen i​n Anlehnung a​n den Graph s​ind Lineal-Funktion,[1] Regentropfen-Funktion, Popcorn-Funktion (nach Popcorn i​n der Pfanne) o​der nach John Horton Conway Sterne über Babylon.

Definition

Die thomaesche Funktion wird als reellwertige Funktion definiert durch:

Die thomaesche Funktion ist ein einfaches Beispiel einer Funktion, deren Menge der Unstetigkeitsstellen kompliziert ist. Genauer gilt: ist stetig auf allen irrationalen Zahlen in [0,1] und unstetig auf allen rationalen Zahlen dieses Intervalls.

Das kann, grob gesagt, folgendermaßen gezeigt werden: Falls irrational ist und nahe bei liegt, so ist entweder irrational oder eine rationale Zahl mit großem Nenner. In beiden Fällen liegt nahe bei . Ist andererseits rational und eine Folge von irrationalen Zahlen in (0,1), die gegen konvergiert, so ist , welches nicht gegen konvergiert.

Verwandte Fragestellung

Umgekehrt gibt es jedoch keine Funktion, die stetig auf den rationalen Zahlen und unstetig auf den irrationalen Zahlen ist, denn die Menge der Unstetigkeitsstellen ist stets eine -Menge (Satz von Young), während aus dem baireschen Kategoriensatz folgt, dass die Menge der irrationalen Zahlen keine -Menge ist.

Unstetigkeitsstellenmengen

Mithilfe einer Variante der thomaeschen Funktion kann man zeigen, dass jede beliebige -Teilmenge des auch tatsächlich als Unstetigkeitsstellenmenge einer Funktion vorkommt. Ist nämlich eine abzählbare Vereinigung abgeschlossener Mengen , so setze man

Durch ein ähnliches Argument wie bei der thomaeschen Funktion sieht man, dass die Menge der Unstetigkeitsstellen von ist.

Literatur

  • J. Thomae: Einleitung in die Theorie der bestimmten Integrale, Verlag von Louis Nebert, Halle a/S, 1875. (Die Funktion findet sich in §20 auf Seite 14.)
  • Robert G. Bartle, Donald R. Sherbert: Introduction to Real Analysis. 3. Auflage. Wiley, 1999, ISBN 978-0-471-32148-4, Example 5.1.6 (h).
  • Stephen Abbot: Understanding Analysis. Springer-Verlag, Berlin 2001, ISBN 0-387-95060-5.

Einzelnachweise

  1. „… the so-called ‘ruler function’, a simple but provocative example that appeared in a work of Johannes Karl Thomae … The graph suggests the vertical markings on a ruler – hence the name.“ Zitiert nach William Dunham: The Calculus Gallery: Masterpieces from Newton to Lebesgue. Princeton University Press, 2004, ISBN 978-0-691-09565-3, Chapter 10.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.