Sudanfunktion
Die Sudanfunktion ist eine rekursive berechenbare Funktion, die total μ-rekursiv jedoch nicht primitiv rekursiv ist, was sie mit der bekannteren Ackermannfunktion gemeinsam hat.
Sie wurde 1927 von dem rumänischen Mathematiker Gabriel Sudan publiziert, der wie Wilhelm Ackermann ein Schüler David Hilberts war.
Definition
Für gilt:
Hintergrund
1926 vermutete David Hilbert, dass jede berechenbare Funktion primitiv-rekursiv sei. Dies wurde durch Wilhelm Ackermann und Gabriel Sudan – beides seine Schüler – mittels unterschiedlichen Funktionen, die zeitnah (Sudan 1927 und Ackermann 1928) publiziert wurden, widerlegt. Die Sudanfunktion und die Ackermannfunktion waren so die ersten veröffentlichten, nicht primitiv rekursiven Funktionen.
Wertetabellen
y\x | 0 | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|
0 | 0 | 1 | 2 | 3 | 4 | 5 |
1 | 1 | 3 | 5 | 7 | 9 | 11 |
2 | 4 | 8 | 12 | 16 | 20 | 24 |
3 | 11 | 19 | 27 | 35 | 43 | 51 |
4 | 26 | 42 | 58 | 74 | 90 | 106 |
5 | 57 | 89 | 121 | 153 | 185 | 217 |
6 | 120 | 184 | 248 | 312 | 376 | 440 |
y\x | 0 | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|
0 | 0 | 1 | 2 | 3 | 4 | 5 |
1 | 1 | 8 | 27 | 74 | 185 | 440 |
2 | 19 | F1(8, 10) = 10228 | F1(27, 29) ≈ 1,55 · 1010 | F1(74, 76) ≈ 5,74 · 1024 | F1(185, 187) | F1(440, 442) |
Literatur
- Gabriel Sudan: Sur le nombre transfini ωω. Bulletin Math. Soc. Roumaine des sciences 30, S. 11–30 (1927). JFM review
- Wilhelm Ackermann: Zum Hilbertschen Aufbau der reellen Zahlen. Mathematische Annalen 99, S. 118–133 (1928). JFM review
- Cristian S. Calude, Solomon Marcus, Ionel Tevy: The first example of a recursive function which is not primitive recursive. Historia Mathematica 6 (1979), no. 4, S. 380–384 doi:10.1016/0315-0860(79)90024-7
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.