Starrer Körper (Algebra)

Ein starrer Körper (englisch: rigid field) i​st im mathematischen Teilgebiet d​er Algebra e​ine ausgezeichnete algebraische Struktur, u​nd zwar e​in Körper, d​er als (Körper-)Automorphismus n​ur einen einzigen, d​en trivialen, nämlich d​ie Identität, zulässt.[1]

Beispiele

Ein Primkörper ist starr. Denn für jeden Automorphismus ist in enthalten und ein Körper (der Fixkörper). Da keinen echten Teilkörper enthält, ist der Fixkörper gleich ganz , und wirkt trivial auf .

Die starren Körper der Charakteristik 0 sind genau die euklidischen Körper. Dazu gehören u. a. der Primkörper der rationalen Zahlen , der Körper der reellen Zahlen und der reell abgeschlossene Körper der algebraischen reellen Zahlen.

Gegenbeispiele

Ein Zwischenkörper ist nicht automatisch starr, wenn Ober- und Teilkörper es sind. Bspw. hat der quadratische Zahlkörper , der zwischen den rationalen Zahlen und den reellen Zahlen liegt (), eine nicht-triviale Konjugationsabbildung.

Ein Körper der Charakteristik 0, der ein Element mit enthält, enthält auch eine Konjugationsabbildung, ist also nicht starr.

Einzelnachweise

  1. Albrecht Beutelspacher: Lineare Algebra. 7. Auflage. Vieweg+Teubner Verlag, Wiesbaden 2010, ISBN 978-3-528-66508-1, S. 40–41.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.