Shamir’s Secret Sharing

Shamir’s Secret Sharing i​st ein 1979 v​on Adi Shamir entwickeltes Secret-Sharing-Verfahren. Mit Hilfe e​ines solchen Verfahrens k​ann man e​in Geheimnis s​o auf mehrere „Instanzen“ (Mitwisser) aufteilen, d​ass zur Rekonstruktion d​es Geheimnisses n​ur eine gewisse Teilmenge dieser Instanzen benötigt w​ird (im Unterschied z​um einfachen Secret-Sharing, b​ei dem sämtliche Instanzen benötigt werden).

Idee des Verfahrens

Der „Dealer“ (benannt nach dem Kartengeber bei einem Kartenspiel) bestimmt eine Zahl an Instanzen, die das Geheimnis später wieder rekonstruieren können sollen und wählt daraufhin ein Polynom vom Grad und berechnet Stützstellen des Polynoms. Diese Stützstellen („Shares“) verteilt der Dealer an die restlichen beteiligten Instanzen. Diese Instanzen können daraufhin mit einem Interpolationsverfahren das Polynom rekonstruieren, dessen konstanter Term das Geheimnis ist.

Ablauf

Der Dealer wählt e​in Polynom

wobei das Geheimnis ist und die zufällig gewählt werden. Nun erzeugt der Dealer Wertepaare , wobei und verteilt diese Wertepaare an die beteiligten Instanzen. Die sind dabei öffentlich und die („Shares“) müssen geheim gehalten werden.

Nach dem Fundamentalsatz der Algebra benötigt man Wertepaare , um dieses Polynom eindeutig zu bestimmen. Daher können bis zu Teilgeheimnisse kompromittiert werden, ohne dass das Geheimnis in Gefahr ist, bestimmt zu werden. Erst wenn Shares bekannt sind, ist es möglich, zu bestimmen. Das bedeutet aber auch, dass zur Bestimmung des Geheimnisses Instanzen ihre Shares kombinieren müssen, um an das Geheimnis zu kommen.

Dieses System wird auch als (t,n)-Schwellwert-Kryptosystem bezeichnet, da nur der gesamten Shares benötigt werden, um das Geheimnis zu rekonstruieren.

Zur Rekonstruktion von kann eine optimierte Lagrange-Interpolation benutzt werden:

Rekonstruktion mittels der Lagrange-Interpolation

Zur Rekonstruktion d​es Polynoms k​ann man d​ie Lagrange-Interpolation benutzen.

Da wir aber nur am konstanten Term interessiert sind, reicht es, wenn wir betrachten

Jeder Teilnehmer berechnet nun

und hat dadurch einen additiven Teil des Geheimnisses .

Wichtig ist, dass bei dieser Berechnung lediglich diejenigen und in die Formel einfließen, die auch wirklich an der Interpolation beteiligt sind. Sind beteiligt, darf nicht benutzt werden.

Shamir’s Secret Sharing modulo p

In der Kryptographie ist es nicht praktikabel, mit reellen Zahlen zu rechnen. Man beschränkt sich deshalb auf endliche Körper. Das Verfahren muss in diesem Fall leicht angepasst werden, indem auf die modulare Arithmetik zurückgegriffen wird. Rechnet man im endlichen Körper mit Elementen ( prim), so muss jede Berechnung modulo erfolgen.

Das Polynom w​ird nun folgend definiert.

wobei

weiter wird folgendermaßen berechnet

Die Berechnung für läuft analog.

Literatur

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.