Satz von Myers-Steenrod

Der Satz v​on Myers-Steenrod i​st ein Lehrsatz a​us dem mathematischen Gebiet d​er Differentialgeometrie.

Er besagt, d​ass die Isometriegruppe j​eder vollständigen Riemannschen Mannigfaltigkeit e​ine Lie-Gruppe ist.

Der Satz stammt v​on Norman Steenrod u​nd Sumner Byron Myers.

Beispiele

Die Isometriegruppe der Einheitssphäre ist die orthogonale Gruppe .

Die Isometriegruppe der hyperbolischen Ebene ist die projektive lineare Gruppe . Die Isometriegruppe des 3-dimensionalen hyperbolischen Raumes ist .

Beweisidee

In einer zusammenhängenden Riemannschen Mannigfaltigkeit wähle einen Punkt und seine Exponentialabbildung . Die Bilder der 1-dimensionalen Unterräume in unter der Exponentialabbildung sind genau die Geodäten durch . Aus der Vollständigkeit von folgt mit dem Satz von Hopf-Rinow, dass jeder Punkt in auf einer solchen Geodäten durch liegt.

Wähle nun linear unabhängige Vektoren in und bezeichne mit ihre Bildpunkte unter . Eine Isometrie bildet Geodäten in Geodäten ab und aus dem oben gesagten folgt, dass eine Isometrie durch die Bilder von bereits eindeutig festgelegt ist.

Wir erhalten also eine Einbettung der Isometriegruppe in das Produkt von Kopien der Mannigfaltigkeit . Man kann zeigen, dass das Bild dieser Einbettung eine differenzierbare Untermannigfaltigkeit und die Gruppenoperationen in dieser Mannigfaltigkeitsstruktur differenzierbar sind. Damit wird eine Lie-Gruppe.

Verallgemeinerung

Allgemeiner ist die Isometriegruppe eines -Raumes stets eine Lie-Gruppe.[1][2] -Räume sind eine Klasse metrischer Maßräume, die alle Riemannschen Mannigfaltigkeiten der Dimension mit Ricci-Krümmung enthält und unter Gromov-Hausdorff-Konvergenz metrischer Maßräume abgeschlossen ist.

Literatur

  • S. B. Myers, N. E. Steenrod: The group of isometries of a Riemannian manifold. Ann. of Math. (2) 40 (1939), no. 2, 400–416.

Einzelnachweise

  1. L. Guijarro, J. Santos-Rodríguez: On the isometry groups of RCD*(K,N)-spaces, manuscripta mathematica 158, 441–461 (2018)
  2. G. Sosa: The isometry group of an RCD*-space is Lie, Potential Analysis 49, 267–286 (2018)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.