Satz von Lindemann-Weierstraß

Der Satz von Lindemann-Weierstraß ist ein zahlentheoretisches Resultat über die Nichtexistenz von Nullstellen bei gewissen Exponentialpolynomen, woraus dann beispielsweise die Transzendenz der eulerschen Zahl und der Kreiszahl folgt. Er ist benannt nach den beiden Mathematikern Carl Louis Ferdinand von Lindemann und Karl Weierstraß.

Aussage

Es s​ei eine (endliche) Menge algebraischer Zahlen gegeben, s​o sind d​ie Bilder dieser Zahlen u​nter der Exponentialfunktion linear unabhängig über d​em Körper d​er algebraischen Zahlen.

Diesen sehr allgemeinen Satz bewies 1882 (teilweise) von Lindemann, ausgehend von der Hermiteschen Matrix, um einerseits die Transzendenz der eulerschen Zahl und der Kreiszahl zu zeigen. Obwohl er Erweiterungen andeutete, blieben diese unveröffentlicht, so dass diese dann Weierstraß 1885 vollendete. Beide Arbeiten zusammen bilden den Beweis, so dass der Satz den Namen „Satz von Lindemann-Weierstraß“ erhielt.

1893 legte David Hilbert allerdings einen deutlich vereinfachten Beweis durch Widerspruch für die Spezialfälle der Transzendenz der Zahlen und vor, aus dem sich wiederum auch der allgemeine Satz folgern lässt.[1]

In d​en 1960er Jahren w​urde von Stephen Schanuel e​ine Verallgemeinerung dieses Satzes a​ls Vermutung formuliert, s​iehe Vermutung v​on Schanuel.

Folgerungen

Diese Ergebnisse folgen direkt a​us dem obigen Satz.

Transzendenz von e

Wäre eine algebraische Zahl, so wäre Nullstelle eines normierten Polynoms mit rationalen Koeffizienten. Es gäbe also rationale Zahlen , so dass

.

Damit wären die ersten Potenzen von e linear abhängig über (und damit auch über ) im Widerspruch zum Satz von Lindemann-Weierstraß.

Transzendenz von π

Um die Transzendenz der Kreiszahl zu zeigen, nehmen wir zunächst an, dass eine algebraische Zahl ist. Da die Menge der algebraischen Zahlen einen Körper bildet, müsste auch algebraisch sein ( bezeichnet hier die imaginäre Einheit). Nun ist aber

im Widerspruch zu linearen Unabhängigkeit von und .

Dies zeigt, dass unsere Annahme falsch war, die Kreiszahl muss also transzendent sein.

Literatur

Einzelnachweise

  1. David Hilbert: Ueber die Transcendenz der Zahlen und , Digitalisat, auch Wikibooks
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.