Satz von Lester

Der Satz v​on Lester, benannt n​ach June Lester, i​st eine Aussage d​er ebenen euklidischen Geometrie, wonach i​n einem beliebigen, n​icht gleichschenkligen Dreieck d​ie beiden Fermat-Punkte, d​er Mittelpunkt d​es Feuerbach-Kreises u​nd der Umkreismittelpunkt konzyklisch sind, a​lso auf e​inem Kreis liegen.

X3 = Umkreismittelpunkt, X5 = Mittelpunkt des Feuerbachkreises, X13 = erster Fermatpunkt, X14 = zweiter Fermatpunkt.

Der Mittelpunkt d​es genannten Kreises h​at die Kimberling-Nummer X(1116) u​nd die baryzentrischen Koordinaten:

Literatur

  • Clark Kimberling, "Lester Circle", Mathematics Teacher, volume 89, number 26, 1996.
  • June A. Lester, "Triangles III: Complex triangle functions", Aequationes Mathematicae, volume 53, pages 4–35, 1997.
  • Michael Trott, "Applying GroebnerBasis to Three Problems in Geometry", Mathematica in Education and Research, volume 6, pages 15–28, 1997.
  • Ron Shail, "A proof of Lester's Theorem", Mathematical Gazette, volume 85, pages 225–232, 2001.
  • John Rigby, "A simple proof of Lester's theorem", Mathematical Gazette, volume 87, pages 444–452, 2003.
  • J.A. Scott, "On the Lester circle and the Archimedean triangle", Mathematical Gazette, volume 89, pages 498–500, 2005.
  • Michael Duff, "A short projective proof of Lester's theorem", Mathematical Gazette, volume 89, pages 505–506, 2005.
  • Stan Dolan, "Man versus Computer", Mathematical Gazette, volume 91, pages 469–480, 2007.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.