Satz von Fontaine und Wintenberger

Der Satz v​on Fontaine u​nd Wintenberger i​st ein mathematischer Lehrsatz a​us dem Gebiet d​er Algebra. Er erfuhr e​ine weitgehende Verallgemeinerung i​n Scholzes Theorie d​er perfektoiden Räume.

Satz: Sei eine Primzahl, der Körper der p-adischen Zahlen und der durch Adjunktion aller iterierten p-fachen Wurzeln aus entstehende Körper. Entsprechend sei der Körper der Potenzreihen über dem Körper mit Elementen und der durch Adjunktion aller iterierten p-fachen Wurzeln aus der Variablen entstehende Körper. Dann sind die absoluten Galoisgruppen von und isomorph zueinander:

Literatur

  • J.-M. Fontaine, J.-P. Wintenberger: Extensions algébriques et corps des normes des extensions APF des corps locaux. C. R. Acad. Sci., Paris, Sér. A 288, 441–444 (1979).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.