Richard S. Hamilton

Richard S. Hamilton (Richard Streit Hamilton; * 1943 i​n Cincinnati) i​st ein US-amerikanischer Mathematiker. Er l​ehrt als Professor a​n der Columbia University.

Richard S. Hamilton 1982

Hamilton studierte a​n der Yale University (Bachelorabschluss 1963) u​nd wurde 1966 a​n der Princeton University b​ei Robert Gunning promoviert (Variation o​f structure o​f Riemann surfaces). Vor seiner Professur a​n der Columbia University w​ar er Professor a​n der Cornell University u​nd der University o​f California, Berkeley. Er w​ar unter anderem Gastwissenschaftler a​n der University o​f Warwick, a​m Courant Institute o​f Mathematical Sciences o​f New York University u​nd der Universität Hawaii.

Hamilton befasste s​ich vor a​llem mit Differentialgeometrie. Mit seinen Arbeiten z​um Ricci-Fluss (von i​hm 1982 eingeführt)[1] leistete e​r entscheidende Vorarbeiten für d​en Beweis d​er Poincaré-Vermutung d​urch Grigorij Perelman. 2006 h​ielt er e​inen Plenarvortrag a​uf dem Internationalen Mathematikerkongress (ICM) i​n Madrid (The Poincare Conjecture), u​nd 1986 w​ar er Invited Speaker a​uf dem ICM i​n Berkeley (Parabolic equations i​n differential geometry).

1996 erhielt e​r den Oswald-Veblen-Preis, 2011 gemeinsam m​it Demetrios Christodoulou d​en Shaw Prize i​n Mathematik.[2] 1999 w​urde Hamilton i​n die National Academy o​f Sciences gewählt, 2003 i​n die American Academy o​f Arts a​nd Sciences.

Schriften

  • Harmonic maps of manifolds with boundaries. Springer Verlag, 1975.
  • The inverse function theorem of Nash and Moser. In: Bulletin of the American Mathematical Society. Band 7, 1982, S. 65–222 (PDF; 12 MB)
  • Three-manifolds with positive Ricci curvature. In: Journal of Differential Geometry. 17, No. 2, 1982, S. 255–306.
  • mit M. Gage: The heat equation shrinking convex plane curves. In: Journal of Differential Geometry. 23, No. 1, 1986, S. 69–96.
  • Four-manifolds with positive curvature operator. In: Journal of Differential Geometry. 24, No. 2, 1986, S. 153–179.
  • The Ricci flow on surfaces. In: James A. Isenberg (Hrsg.): Mathematics and general relativity (= Contemporary Mathematics. 71). American Mathematical Society, Providence (RI) 1988, ISBN 978-0-8218-5079-4.
  • The Harnack estimate for the Ricci flow. In: Journal of Differential Geometry. 37, No. 1, 1993, S. 225–243.
  • A compactness property for solutions of the Ricci flow. Amer. J. Math. 117 (1995), no. 3, 545–572.
  • The formation of singularities in the Ricci flow. In: Surveys in differential geometry. Vol. II. International Pres, Cambridge (MA) 1995, S. 7–136
  • Four-manifolds with positive isotropic curvature. In: Communications in Analysis and Geometry. 5, No. 1, 1997, S. 1–92.
  • Non-singular solutions of the Ricci flow on three-manifolds. In: Communications in Analysis and Geometry. 7, No. 4, 1999, 695–729.
Commons: Richard Hamilton (mathematician) – Sammlung von Bildern, Videos und Audiodateien

Fußnoten

  1. Three-manifolds with positive Ricci curvature. In: Journal of Differential Geometry. 17, No. 2, 1982, S. 255–306.
  2. ETH-Forscher erhält halbe Million Dollar. In: Tages-Anzeiger. 8. Juni 2011
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.